Skip to main content
Log in

Plasmon Activation and Luminescence Quenching of Solutions of Polyphenylene Vinylene (MEH-PPV) by Single-Walled and Double-Walled Carbon Nanotubes

  • PLASMONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The spectral and luminescent properties of benzene and toluene solutions of poly[2-methoxy-5-(2'-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) with single-walled and double-walled carbon nanotube (CNT) additives are studied with the purpose of detecting the plasmonic properties of CNTs in the luminescence of MEH-PPV solutions. It is established that the dependence of the luminescence intensity of a solution of the polymer on the concentration of CNTs is nonmonotonic in nature; in particular, the luminescence intensity initially increases with an increase in the number of dissolved nanotubes and then decreases. In this case, the luminescence spectrum itself is barely deformed. This effect is observed with both single-walled CNTs (SWCNTs) and double-walled CNTs (DWCNTs). The depth of light intensity modulation in the case of DWCNTs was higher than in the case of SWCNTs. To explain the observed dependences, various versions of the electrodynamic model of exciting/quenching the luminescence of MEH-PPV by carbon nanotubes are proposed. Direct simulation of the characteristics of near and far fields is performed on the basis of Maxwell equations, for the numerical solution of which the finite difference time domain (FDTD) method is used. Computational experiments have shown that CNTs with a MEH-PPV layer have directional antenna properties and act as unusual waveguides. Thus, the energy of radiation that reached the far-field region in the nanotube axis direction is an order of magnitude higher than that in the case of a solution without CNTs. Fountain electromagnetic waves that emanate from both ends of the nanotube and the stage of plasmon wave beats, which characterizes the nanotube as a waveguide, are detected. Molecular dynamic simulation of the configurations of the adsorbed MEH-PPV chain in various solvents is performed both on an isolated CNT and on two parallel CNTs with different distances between them. It is found that the conformational structure of MEH-PPV becomes more and more loose as the distance between CNTs increases; in particular, an increase in the number of large loops of the macrochain in the bulk of the solution is observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. N. A. Davidenko, S. V. Dekhtyarenko, A. V. Kozinets, A. S. Lobach, E. V. Mokrinskaya, V. A. Skryshevsky, N. G. Spitsyna, S. L. Studzinsky, O. V. Tretyak, and L. S. Tonkopieva, Tech. Phys. 56, 259 (2011).

    Article  Google Scholar 

  2. A. A. Bakulin, M. S. Pshenichnikov, P. H. M. van Loosdrecht, I. V. Golovnin, and D. Yu. Paraschuk, in Physics of Nanostructured Solar Cells, Ed. by V. Badescu and M. Paulescu (Nova Science, New York, 2010), p. 463.

    Google Scholar 

  3. A. Y. Sosorev, O. D. Parashchuk, S. A. Zapunidi, G. A. Kashtanov, and D. Y. Paraschuk, J. Phys. Chem. C 117, 6972 (2013). https://doi.org/10.1021/jp4000158

    Article  Google Scholar 

  4. D. K. Chambers, S. Karanam, D. Qi, S. Selmic, Y. B. Losovyj, L. G. Rosa, and P. A. Dowben, Appl. Phys. A 80, 483 (2005). https://doi.org/10.1007/s00339-004-3043-x

    Article  ADS  Google Scholar 

  5. A. Ya. Klochkov, S. A. Maksimenko, and E. I. Masalov, Izv. Yugo-Zap. Univ., Ser. Fiz. Khim., No. 2, 50 (2013).

  6. S. A. Maksimenko and G. Ya. Slepyan, J. Commun. Technol. Electron. 47, 235 (2002). https://www.elibrary.ru/item.aspıd=14326812

  7. M. G. Kucherenko, V. N. Stepanov, and N. Yu. Kruchinin, Opt. Spectrosc. 118, 103 (2015). https://doi.org/10.1134/S0030400X15010154

    Article  ADS  Google Scholar 

  8. C. A. Marocico and J. Knoester, Phys. Rev. A 79, 053816 (2009). https://doi.org/10.1103/PhysRevA.79.053816

    Article  ADS  Google Scholar 

  9. T. M. Chmereva and M. G. Kucherenko, Opt. Spectrosc. 110, 767 (2011). https://doi.org/10.1134/S0030400X11040084

    Article  ADS  Google Scholar 

  10. M. G. Kucherenko and T. M. Chmereva, J. Appl. Spectrosc. 84 (3) (2017). https://doi.org/10.1007/s10812-017-0480-9

  11. M. G. Kucherenko and V. M. Nalbandyan, Phys. Proc. 73, 136 (2015).https://doi.org/10.1016/j.phpro2015.09.134

  12. T. M. Chmereva, M. G. Kucherenko, and A. D. Dmitriev, Opt. Spectrosc. 118, 284 (2015). https://doi.org/10.7868/S0030403415020051

    Article  ADS  Google Scholar 

  13. P. L. Hernández-Martínez and A. O. Govorov, Phys. Rev. B 78, 035314 (2008). https://doi.org/10.1103/PhysRevB.78.035314

    Article  ADS  Google Scholar 

  14. P. L. Hernández-Martínez and A. O. Govorov, J. Phys. Chem. C (2013). https://doi.org/10.1021/jp402242y

  15. V. V. Klimov and M. Ducloy, arXiv: physics/0206048v2 [physics.atom-ph] (2002).

  16. A. Yu. Grosberg and A. P. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; AIP Press, Boston, MA, 1994).

  17. M. G. Kucherenko and T. M. Chmereva, Vestn. OGU, No. 9, 177 (2008).

    Google Scholar 

  18. V. V. Klimov and M. Ducloy, Phys. Rev. A 62, 043818 (2000). https://doi.org/10.1103/PhysRevA.62.043818

    Article  ADS  Google Scholar 

  19. Y. W. Jung, L. S. Y. H. Byun, and Y. D. Kim, Synth. Met. 160, 651 (2010).

    Article  Google Scholar 

  20. A. Marletta, T. B. Debora, and G. Vanessa, Braz. J. Phys. 34, 697 (2004). https://doi.org/10.1590/S0103-97332004000400048

    Article  ADS  Google Scholar 

  21. H. Qian, G. Carsten, and N. Anderson, Basic Solid State Phys. J. B 245, 2243 (2008). https://doi.org/10.1002/pssb.200879598

    Article  Google Scholar 

  22. V. V. Klimov, M. Ducloy, and V. S. Letokhov, Quant. Electron. 31, 569 (2001). www.mathnet.ru/links/ c464e6d35313e05b9ea714fe9920223f/qe2007.pdf. https://doi.org/10.1070/QE2001v031n07ABEH002007

  23. I. V. Bondarev, L. M. Woods, and A. Popescu, Opt. Spectrosc. 111, 733 (2011). https://doi.org/10.1134/S0030400X11120046

    Article  ADS  Google Scholar 

  24. P. H. Tan, A. G. Rozhin, T. Hasan, P. Hu, V. Scardaci, W. I. Milne, and A. C. Ferrari, Phys. Rev. Lett. 99, 137402 (2007). https://doi.org/10.1103/PhysRevLett.99.137402

    Article  ADS  Google Scholar 

  25. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005). https://doi.org/10.1002/jcc.20289

    Article  Google Scholar 

  26. N. Yu. Kruchinin and M. G. Kucherenko, Colloid. J. 82, 136 (2020). https://doi.org/10.1134/S1061933X20020088

    Article  Google Scholar 

  27. K. Vanommeslaeghe, E. Hatcher, C. Acharya, S. Kundu, S. Zhong, J. Shim, E. Darian, O. Guvench, P. Lo-pes, I. Vorobyov, and A. D. MacKerell, Jr., J. Comput. Chem. 31, 671 (2010). https://doi.org/10.1002/jcc.21367

    Article  Google Scholar 

  28. W. Yu, X. He, K. Vanommeslaeghe, and A. D. MacKerell, Jr., J. Comput. Chem. 33, 2451 (2012). https://doi.org/10.1002/jcc.23067

    Article  Google Scholar 

  29. A. D. MacKerell, Jr., D. Bashford, M. Bellott, R. L. Dunbrack, Jr., J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, et al., J. Phys. Chem. B 102, 3586 (1998). https://doi.org/10.1021/jz500054d

    Article  Google Scholar 

  30. F. Zhu and K. Schulten, Biophys. J. 85, 236 (2003). https://doi.org/10.1016/S0006-3495(03)74469-5

    Article  Google Scholar 

  31. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993). https://doi.org/10.1063/1.464397

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to L.V. Grekov for his assistance in performing the FDTD calculations.

Funding

This study was supported by the Ministry of Science and Higher Education of the Russian Federation within scientific project no. FSGU-2020-0003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Kucherenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kucherenko, M.G., Stepanov, V.N. & Kruchinin, N.Y. Plasmon Activation and Luminescence Quenching of Solutions of Polyphenylene Vinylene (MEH-PPV) by Single-Walled and Double-Walled Carbon Nanotubes. Opt. Spectrosc. 128, 1298–1310 (2020). https://doi.org/10.1134/S0030400X20080196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20080196

Keywords:

Navigation