Skip to main content
Log in

Spectrophotometry of Layers on Plane Parallel Substrates

  • PHYSICAL OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Integral expressions are obtained for the reflectance and transmittance spectra of a structure that is formed by two thin layers deposited on opposite faces of a plane-parallel substrate and that is obliquely illuminated with partially coherent light. As a result of an asymptotic analysis of the integrals, approximate analytical formulas are found for calculating the indicated spectra, which are convenient for use to solve inverse spectrophotometry problems. An aluminum doped zinc oxide layer deposited on a glass substrate is studied. The spectra of the refractive indices and absorbances of the layer and the substrate, as well as the layer thickness, are restored by processing the reflectance and transmittance spectra of the structure measured for s- and p-polarized waves at two angles of incidence of the light on the structure. The found parameters of the structure are used in computational experiments to estimate the applicability limits of the formulated approximations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. L. Vriens and W. Rippens, Appl. Opt. 22, 4105 (1983). https://doi.org/10.1364/AO.22.004105

    Article  ADS  Google Scholar 

  2. D. Minkov, J. Opt. Soc. Am. A 8, 306 (1991). https://doi.org/10.1364/JOSAA.8.000306

    Article  ADS  Google Scholar 

  3. G. Chen and C. L. Tien, J Heat Trans-T ASME 114, 636 (1992). https://doi.org/10.1115/1.2911328

    Article  Google Scholar 

  4. K. Richter, G. Chen, and C. L. Tien, Opt. Eng. 32, 1897 (1993). https://doi.org/10.1117/12.147152

    Article  ADS  Google Scholar 

  5. D. Minkov, Appl. Opt. 33, 7698 (1994). https://doi.org/10.1364/AO.33.007698

    Article  ADS  Google Scholar 

  6. C. F. Anderson and Y. Bayazitoglut, J. Thermophys. Heat Transf. 10, 26 (1996). https://doi.org/10.2514/3.748

    Article  Google Scholar 

  7. J. M. Gonzalez-Leal, R. Prieto-Alcon, J. A. Angel, D. A. Minkov, and E. Marquez, Appl. Opt. 41, 7300 (2002). https://doi.org/10.1364/AO.41.007300

    Article  ADS  Google Scholar 

  8. C. C. Katsidis and D. I. Siapkas, Appl. Opt. 41, 3978 (2002). https://doi.org/10.1364/AO.41.003978

    Article  ADS  Google Scholar 

  9. E. Centurioni, Appl. Opt. 44, 7532 (2005). https://doi.org/10.1364/AO.44.007532

    Article  ADS  Google Scholar 

  10. K. Fu, P. F. Hsu, and Z. M. Zhang, Appl. Opt. 45, 653 (2006). https://doi.org/10.1364/AO.45.000653

    Article  ADS  Google Scholar 

  11. E. V. William and D. Castro, Appl. Opt. 46, 502 (2007). https://doi.org/10.1364/AO.46.000502

    Article  ADS  Google Scholar 

  12. A. B. Domínguez-Gómez, R. A. Mauricio-Sánchez, and A. Mendoza-Galván, Opt. Mater. 84, 564 (2018). https://doi.org/10.1016/j.optmat.2018.07.059

    Article  ADS  Google Scholar 

  13. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

    MATH  Google Scholar 

  14. A. Ango, Mathematics for Electrical and Radio Engineers (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  15. S. G. Rautian, Sov. Phys. Usp. 1, 245 (1958).

    Article  ADS  Google Scholar 

  16. A. B. Sotsky, K. N. Krivetskii, S. O. Parashkov, and L. I. Sotskaya, J. Appl. Spectrosc. 83, 845 (2016). https://doi.org/10.1007/s10812-016-0373-3

    Article  ADS  Google Scholar 

  17. V. I. Smirnov, Higher Mathematics Course (Nauka, Moscow, 1974), Vol. 3, Part 2 [in Russian].

    Google Scholar 

  18. L. Gao, F. Lemarchand, and M. Lequime, Opt. Express 20, 15735 (2012). https://doi.org/10.1364/OE.20.015734

    Article  ADS  Google Scholar 

  19. N. I. Staskov, A. B. Sotsky, L. I. Sotskaya, V. V. Filippov, B. G. Shulicky, and I. A. Kashko, J. Appl. Spectrosc. 85, 710 (2018). https://doi.org/10.1007/s10812-018-0709-2

    Article  ADS  Google Scholar 

  20. G. Korn and T. Korn Mathematical Handbook for Scientists and Engineers (McGraw-Hill, New York, 1968).

    MATH  Google Scholar 

  21. D. J. Hudson, Statistics (Geneva, 1964).

  22. A. B. Sotsky, L. M. Steingart, S. O. Parashkov, and L. I. Sotskaya, Bull. Russ. Acad. Sci.: Phys. 80, 421 (2016). https://doi.org/10.7868/S036767651604030X

    Article  Google Scholar 

  23. A. B. Sotskii and C. C. Mikheev, Vestn. MGU im. A.A. Kuleshova, Ser. B, No. 2 (54), 49 (2019).

    Google Scholar 

Download references

Funding

This work was performed within the framework of state assignment 1.3.03 “Development of the theory of optical monitoring methods for nanoscale thin-film structures,” the State Program of Scientific Research of the Republic of Belarus “Photonics, Optoelectronics, and Microelectronics,” state registration number 20161316.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Sotsky.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sotsky, A.B., Mikheev, S.S., Stas’kov, N.I. et al. Spectrophotometry of Layers on Plane Parallel Substrates. Opt. Spectrosc. 128, 1155–1166 (2020). https://doi.org/10.1134/S0030400X20080354

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20080354

Keywords:

Navigation