Skip to main content
Log in

Investigation of Anomalous Lasing in Vertical-Cavity Surface-Emitting Lasers of the 850-nm Spectral Range with a Double Oxide Current Aperture at Large Gain-to-Cavity Detuning

  • LASER PHYSICS AND LASER OPTICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

Results of investigation of static characteristics of the vertical-cavity surface-emitting lasers (VCSEL) of the 850-nm spectral range based on strained InGaAs/AlGaAs quantum wells in a wide range of current-aperture sizes are presented. The reasons for their anomalous behavior at large design gain-to-cavity wavelength detuning are analyzed. Lateral spreading of carriers in the plane of quantum wells and specific profile of oxide aperture (leading to formation of an effective two-step waveguide) in the studied VCSELs makes possible the existence of higher-order modes localized at the current-aperture periphery. Inhomogeneity of carrier injection across the current aperture in wide-aperture lasers leads to initial onset lasing via the higher-order modes. Subsequent transition to classical lasing via the lower-order modes with increase in current is caused by changes in the gain-to-cavity detuning with increase in internal laser temperature. Anomalous lasing via higher-order modes in the case of narrow-aperture VCSELs becomes possible due to increase in the diffraction losses at the edge of the oxide current aperture for the fundamental mode. In the process, not only a decrease in the gain-to-cavity detuning but also the effect of thermal lens are responsible for subsequent laser hopping to the regime of co-lasing via two modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. R. Michalzik, VCSELs: Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers (Springer, Berlin, Heidelberg, 2013).

    Book  Google Scholar 

  2. S. A. Blokhin, M. A. Bobrov, A. G. Kuz’menkov, A. A. Blokhin, A. P. Vasil’ev, Yu. A. Guseva, M. M. Kulagina, Yu. M. Zadiranov, N. A. Maleev, I. I. Novikov, L. Ya. Karachinsky, N. N. Ledentsov and V. M. Ustinov, Tech. Phys. Lett. 44, 28 (2018).

    Article  ADS  Google Scholar 

  3. N. El-Sayed, I. Stefanovici, G. Amvrosiadis, et al., in Proceedings of the 12th ACM SIGMETRICS/Performance Joint International Conference on Measurement and Modeling of Computer Systems, London, UK, June 11–15,2012, p. 163.

  4. D. B. Young, J. W. Scott, F. H. Peters, et al., IEEE J. Quantum Electron. 29, 2013 (1993).

    Article  ADS  Google Scholar 

  5. H. Li, P. Wolf, P. Moser, et al., IEEE J. Quantum Electron. 50, 613 (2014).

    Article  ADS  Google Scholar 

  6. N. Ledentsov, M. Agustin, J.-R. Kropp, et al., Proc. SPIE 10552, 105520 (2018).

    Google Scholar 

  7. K.-L. Chi, J.-L. Yen, J.-M. Wun, et al., IEEE J. Sel. Top. Quant. Electron. 21, 1701510 (2015).

    Google Scholar 

  8. S. A. Blokhin, N. A. Maleev, A. G. Kuzmenkov, et al., Proc. SPIE 8276, 8276-31 (2012).

    Google Scholar 

  9. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, et al., Appl. Phys. Lett. 105, 061104 (2014).

    Article  ADS  Google Scholar 

  10. S. A. Blokhin, M. A. Bobrov, N. A. Maleev, A. G. Kuzmenkov, V. V. Stetsenko, M. M. Pavlov, L. Ya. Karachinsky, I. I. Novikov, Yu. M. Zadiranov, A. Yu. Egorov, and V. M. Ustinov, Semiconductors 47, 844 (2013).

    Article  ADS  Google Scholar 

  11. L. Ya. Karachinsky, S. A. Blokhin, I. I. Novikov, et al., Semicond. Sci. Tech. 28, 065010 (2013).

    Article  ADS  Google Scholar 

  12. K. D. Choquette, K. M. Geib, C. I. H. Ashby, et al., IEEE J. Sel. Top. Quant. Electron. 3, 916 (1997).

    Article  ADS  Google Scholar 

  13. M. Brunner, K. Gulden, R. Hövel, et al., Appl. Phys. Lett. 76, 7 (2000).

    Article  ADS  Google Scholar 

  14. M. Osinski and V. A. Smagley, Proc. SPIE 3419, 196 (1998).

    ADS  Google Scholar 

  15. G. R. Hadley, Opt. Lett. 20, 1483 (1995).

    Article  ADS  Google Scholar 

  16. P. P. Baveja, B. Kögel, P. Westbergh, et al., Opt. Express 19, 15490 (2011).

    Article  ADS  Google Scholar 

  17. N. K. Dutta, L. W. Tu, G. Hasnain, et al., Electron. Lett. 27, 208 (1991).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to VI-Systems GmbH (Berlin) and Prof. D. Bimberg (TU Berlin) for providing samples of lasers for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Blokhin.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Blokhin, S.A., Bobrov, M.A., Maleev, N.A. et al. Investigation of Anomalous Lasing in Vertical-Cavity Surface-Emitting Lasers of the 850-nm Spectral Range with a Double Oxide Current Aperture at Large Gain-to-Cavity Detuning. Opt. Spectrosc. 128, 1174–1181 (2020). https://doi.org/10.1134/S0030400X20080081

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20080081

Keywords:

Navigation