Skip to main content
Log in

Development of microfluidic chip for dilation of slurry

  • Research Paper
  • Published:
Microfluidics and Nanofluidics Aims and scope Submit manuscript

Abstract

In this paper, we propose a novel design of channels for dilution of microfluidic samples having suspended particles without the use of a secondary buffer solution. The proposed design takes advantage of parallelization to augment the sample processing rate while maintaining a similar dilation performance. Seven different microchannel geometries are tested to identify the most efficient design. The dilation performance and service life have been substantially increased by using improvised design, in which microchannels are connected between headers, and a circular pillar array is provided at the inlet of the channel. Various parameters affecting the dilation performance are investigated, from which the critical parameters are found to be channel aspect ratio and flow Reynolds number. An empirical relation, which can estimate the output slurry concentration as a function of aspect ratio and flow Reynolds number, is proposed. Particle accumulation patterns inside the headers are reported, and factors affecting it are discussed. Further, a technique to increase microchannel service life is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aghilinejad A, Aghaamoo M, Chen X (2019) On the transport of particles/cells in high-throughput deterministic lateral displacement devices: implications for circulating tumor cell separation. Biomicrofluidics 13(3):034112

    Article  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Enhanced particle filtration in straight microchannels using shear-modulated inertial migration. Phys Fluids 20(10):101702

    Article  MATH  Google Scholar 

  • Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2009) Inertial microfluidics for continuous particle filtration and extraction. Microfluid Nanofluid 7(2):217–226

    Article  Google Scholar 

  • Bhardwaj P, Bagdi P, Sen AK (2011) Microfluidic device based on a micro-hydrocyclone for particle–liquid separation. Lab Chip 11(23):4012–4021

    Article  Google Scholar 

  • Clime L, Li K, Geissler M, Hoa XD, Robideau GP, Bilodeau GJ, Veres T (2017) Separation and concentration of Phytophthora ramorum sporangia by inertial focusing in curving microfluidic flows. Microfluid Nanofluid 21(1):5

    Article  Google Scholar 

  • Cupelli C, Borchardt T, Steiner T, Paust N, Zengerle R, Santer M (2013) Leukocyte enrichment based on a modified pinched flow fractionation approach. Microfluid Nanofluid 14(3–4):551–563

    Article  Google Scholar 

  • Di Carlo D, Edd JF, Irimia D, Tompkins RG, Toner M (2008) Equilibrium separation and filtration of particles using differential inertial focusing. Anal Chem 80(6):2204–2211

    Article  Google Scholar 

  • Dincau BM, Aghilinejad A, Hammersley T, Chen X, Kim JH (2018) Deterministic lateral displacement (DLD) in the high Reynolds number regime: high-throughput and dynamic separation characteristics. Microfluid Nanofluid 22(6):59

    Article  Google Scholar 

  • Huang LR, Cox EC, Austin RH, Sturm JC (2004) Continuous particle separation through deterministic lateral displacement. Science 304(5673):987–990

    Article  Google Scholar 

  • Inaba H, Dai C, Horibe A (2003) Natural convection heat transfer of microemulsion phase-change-material slurry in rectangular cavities heated from below and cooled from above. Int J Heat Mass Transf 46(23):4427–4438

    Article  Google Scholar 

  • Kuravi S, Jianhua Du, Chow LC (2010) Encapsulated phase change material flow in manifold microchannels. J Thermo Phys Heat Transfer 24:2

    Google Scholar 

  • Lee K, Kim C, Jung G, Kim TS, Kang JY, Oh KW (2010) Microfluidic network-based combinatorial dilution device for high throughput screening and optimization. Microfluid Nanofluid 8(5):677–685

    Article  Google Scholar 

  • Lee K, Kim C, Kim Y, Ahn B, Bang J, Kim J, Oh KW (2011) Microfluidic concentration-on-demand combinatorial dilutions. Microfluid Nanofluid 11(1):75–86

    Article  Google Scholar 

  • McGrath J, Jimenez M, Bridle H (2014) Deterministic lateral displacement for particle separation: a review. Lab Chip 14(21):4139–4158

    Article  Google Scholar 

  • Moloudi R, Oh S, Yang C, Warkiani ME, Naing MW (2018) Inertial particle focusing dynamics in a trapezoidal straight microchannel: application to particle filtration. Microfluid Nanofluid 22(3):33

    Article  Google Scholar 

  • Morijiri T, Sunahiro S, Senaha M, Yamada M, Seki M (2011) Sedimentation pinched-flow fractionation for size-and density-based particle sorting in microchannels. Microfluid Nanofluid 11(1):105–110

    Article  Google Scholar 

  • Morimoto T, Kumano H (2018) Flow and heat transfer characteristics of phase change emulsions in a circular tube: part 1 Laminar flow. Int J Heat Mass Transf 117:887–895

    Article  Google Scholar 

  • Quilaqueo M, Gim-Krumm M, Ruby-Figueroa R, Troncoso E, Estay H (2019) Determination of size distribution of precipitation aggregates using non-invasive microscopy and semiautomated image processing and analysis. Minerals 9(12):724

    Article  Google Scholar 

  • Reyes DR, Iossifidis D, Auroux PA, Manz A (2002) Micro total analysis systems Introduction, theory, and technology. Anal Chem 74(12):2623–2636

    Article  Google Scholar 

  • Seo J, Lean MH, Kole A (2007) Membrane-free microfiltration by asymmetric inertial migration. Appl Phys Lett 91(3):033901

    Article  Google Scholar 

  • Sollier E, Amini H, Go DE, Sandoz PA, Owsley K, Di Carlo D (2015) Inertial microfluidic programming of microparticle-laden flows for solution transfer around cells and particles. Microfluid Nanofluid 19(1):53–65

    Article  Google Scholar 

  • Vasilakis N, Papadimitriou KI, Morgan H, Prodromakis T (2019) Modular pressure and flow rate-balanced microfluidic serial dilution networks for miniaturised point-of-care diagnostic platforms. Sensors 19(4):911

    Article  Google Scholar 

  • Warkiani ME, Tay AKP, Guan G, Han J (2015) Membrane-less microfiltration using inertial microfluidics. Sci Rep 5:11018

    Article  Google Scholar 

  • Yamada M, Nakashima M, Seki M (2004) Pinched flow fractionation: continuous size separation of particles utilizing a laminar flow profile in a pinched microchannel. Anal Chem 76(18):5465–5471

    Article  Google Scholar 

  • Zhang J, Yan S, Sluyter R, Li W, Alici G, Nguyen NT (2014) Inertial particle separation by differential equilibrium positions in a symmetrical serpentine micro-channel. Sci Rep 4:4527

    Article  Google Scholar 

  • Zhang J, Yan S, Yuan D, Alici G, Nguyen NT, Warkiani ME, Li W (2016) Fundamentals and applications of inertial microfluidics: a review. Lab Chip 16(1):10–34

    Article  Google Scholar 

  • Zhao Q, Yuan D, Yan S, Zhang J, Du H, Alici G, Li W (2017) Flow rate-insensitive microparticle separation and filtration using a microchannel with arc-shaped groove arrays. Microfluid Nanofluid 21(3):55

    Article  Google Scholar 

  • Zhu Y, Wu J, Shepherd IS, Coghill M, Vagias N, Elkin K (2000) An automated measurement technique for slurry settling tests. Miner Eng 13(7):765–772

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arup Kumar Das.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunipe, P.K., Das, A.K. Development of microfluidic chip for dilation of slurry. Microfluid Nanofluid 24, 79 (2020). https://doi.org/10.1007/s10404-020-02386-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10404-020-02386-8

Keywords

Navigation