Skip to main content
Log in

Autocalibration method for scanning electron microscope using affine camera model

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper deals with the task of autocalibration of scanning electron microscope (SEM), which is a technique allowing to compute camera motion and intrinsic parameters. In contrast to classical calibration, which implies the use of a calibration object and is known to be a tedious and rigid operation, auto- or selfcalibration is performed directly on the images acquired for the visual task. As autocalibration represents an optimization problem, all the steps contributing to the success of the algorithm are presented: formulation of the cost function incorporating metric constraints, definition of bounds, regularization, and optimization algorithm. The presented method allows full estimation of camera matrices for all views in the sequence. It was validated on virtual images as well as on real SEM images (pollen grains, cutting tools, etc.). The results show a good convergence range and low execution time, notably compared to classical methods, and even more in the context of the calibration of SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mundy, J.L., Zisserman, A.: Geometric Invariance in Computer Vision, vol. 92. MIT Press, Cambridge (1992)

    Google Scholar 

  2. Wang, G., Jonathan, W.: Guide to Three Dimensional Structure and Motion Factorization. Springer, London (2011)

    Book  Google Scholar 

  3. Zhang, Z.: Flexible camera calibration by viewing a plane from unknown orientations. In: IEEE International Conference on Computer Vision (ICCV’99), vol. 1, pp. 666–673 (1999)

  4. Faugeras, O.D., Luong, Q.-T., Maybank, S.J: Camera self-calibration: theory and experiments. In: European Conference on Computer Vision (ECCV’92), pp. 321–334 (1992)

  5. Hartley, R.I.: Projective reconstruction and invariants from multiple images. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1036–1041 (1994)

    Article  Google Scholar 

  6. Sturm, P., Triggs, B.: A factorization based algorithm for multi-image projective structure and motion. In: European Conference on Computer Vision (ECCV’96), pp. 709–720 (1996)

  7. Dai, Y., Li, H., He, M.: Element-wise factorization for n-view projective reconstruction. In European Conference on Computer Vision (ECCV’10), pp. 396–409 (2010)

  8. Oliensis, J.: A critique of structure-from-motion algorithms. Comput. Vis. Image Underst. 80, 172–214 (2000)

    Article  Google Scholar 

  9. Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9, 137–154 (1992)

    Article  Google Scholar 

  10. Pollefeys, M., Van Gool, L.: Stratified self-calibration with the modulus constraint. IEEE Trans. Pattern Anal. Mach. Intell. 21, 707–724 (1999)

    Article  Google Scholar 

  11. Triggs, B.: Autocalibration from planar scenes. In: European Conference on Computer Vision (ECCV’98), pp. 89–105 (1998)

  12. Sturm, P.: Critical motion sequences for monocular self-calibration and uncalibrated euclidean reconstruction. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR’97), pp. 1100–1105 (1997)

  13. Quan, L.: Self-calibration of an affine camera from multiple views. Int. J. Comput. Vis. 19, 93–105 (1996)

    Article  Google Scholar 

  14. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  15. Fusiello, A., Benedetti, A., Farenzena, M., Busti, A.: Globally convergent autocalibration using interval analysis. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1633–1638 (2004)

    Article  Google Scholar 

  16. Chandraker, M., Agarwal, S., Kahl, F., Nistér, D., Kriegman, D.: Autocalibration via rank-constrained estimation of the absolute quadric. In: IEEE International Conference on Computer Vision and Pattern Recognition (CVPR’07), pp. 1–8 (2007)

  17. Heinrich, S.B., Snyder, W.E., Frahm, J.-M.: Maximum likelihood autocalibration. Image Vis. Comput. 29, 653–665 (2011)

    Article  Google Scholar 

  18. Amelinckx, S., Van Dyck, D., Van Landuyt, J., Van Tendeloo, G.: Electron Microscopy: Principles and Fundamentals. Wiley, New York (2008)

    Google Scholar 

  19. Goldstein, J.I., Newbury, D.E., Michael, J.R., Ritchie, N.W.M., Scott, J.H.J., Joy, D.C.: Scanning Electron Microscopy and X-ray Microanalysis. Springer, Berlin (2017)

    Google Scholar 

  20. Ribeiro, E., Shah, M.: Computer vision for nanoscale imaging. Mach. Vis. Appl. 17(3), 147–162 (2006)

    Article  Google Scholar 

  21. Goldstein, J., Newbury, D.E., Joy, D.C., Lyman, C.E., Echlin, P., Lifshin, E., Sawyer, L., Michael, J.R.: Scanning Electron Microscopy and X-ray Microanalysis. Springer, Berlin (2003)

    Book  Google Scholar 

  22. Cornille, N., Garcia, D., Sutton, M.A., McNeill, S., Orteu, J.-J.: Automated 3-D reconstruction using a scanning electron microscope. In: SEM Conference on Experimental and Applied Mechanics (2003)

  23. Sinram, O., Ritter, M., Kleindick, S., Schertel, A., Hohenberg, H., Albertz, J.: Calibration of a SEM, using a nanopositioning tilting table and a microscopic calibration pyramid. ISPRS Arch. 34, 210–215 (2002)

    Google Scholar 

  24. Cui, L., Marchand, E.: Calibration of scanning electron microscope using a multi-image non-linear minimization process. In: IEEE International Conference on Robotics and Automation (ICRA’14), pp. 5191–5196 (2014)

  25. Kudryavtsev, A.V., Dembélé, S., Piat, N.: Full 3D rotation estimation in scanning electron microscope. In: International Conference on Intelligent Robots and Systems (IROS’17), pp. 42–47 (2017)

  26. He, J., Zhou, R., Hong, Z.: Modified fast climbing search autofocus algorithm with adaptive step size searching technique for digital camera. IEEE Trans. Consum. Electron. 12, 244–252 (2003)

    Google Scholar 

  27. Hadamard, J.: Sur les Problèmes aux dérivées Partielles et leur Signification Physique, pp. 49–52. Princeton University Bulletin, Princeton (1902)

    Google Scholar 

  28. Tikhonov, A.N., Arsenin, V.Y., John, F.: Solutions of Ill-posed Problems, vol. 14. Winston, Washington, D.C. (1977)

    MATH  Google Scholar 

  29. Weise, T.: Global Optimization Algorithms—Theory and Application. Self-Published (2009)

  30. Moles, C.G., Mendes, P., Banga, J.R.: Parameter estimation in biochemical pathways: a comparison of global optimization methods. Genome Res. 13, 2467–2474 (2003)

    Article  Google Scholar 

  31. Ugray, Z., Lasdon, L., Plummer, J., Glover, F., Kelly, J., Martí, R.: Scatter search and local NLP solvers: a multistart framework for global optimization. INFORMS J. Comput. 19, 328–340 (2007)

    Article  MathSciNet  Google Scholar 

  32. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Publishing Company, Boston (1989)

    MATH  Google Scholar 

  33. Glover, F.: A template for scatter search and path relinking. Lect. Notes Comput. Sci. 1363, 13–54 (1998)

    Google Scholar 

  34. Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Pattern Anal. Mach. Intell. 19, 206–218 (1997)

    Article  Google Scholar 

  35. Tafti, A.P., Kirkpatrick, A.B., Holz, J.D., Owen, H.A., Yu, Z.: 3DSEM: A 3D Microscopy Dataset. Data Brief 6, 112 (2015)

Download references

Funding

This work has been supported by the EIPHI Graduate School (contract “ANR-17-EURE-0002”), the Equipex ROBOTEX project (contract “ANR-10-EQPX-44-01”), the ISITE-BFC project (contract “ANR-15-IDEX-03”) and the Interreg France-Suisse.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valérian Guelpa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kudryavtsev, A.V., Guelpa, V., Rougeot, P. et al. Autocalibration method for scanning electron microscope using affine camera model. Machine Vision and Applications 31, 69 (2020). https://doi.org/10.1007/s00138-020-01109-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00138-020-01109-x

Keywords

Navigation