Skip to main content

Advertisement

Log in

Cytotoxicity and genotoxicity of Hevea brasiliensis latex C-serum DCS sub-fraction as anticancer agents

  • Original Paper
  • Published:
Journal of Rubber Research Aims and scope Submit manuscript

Abstract

Dialysed latex C-serum supernatant (DCS) sub-fraction from the rubber tree (Hevea brasiliensis) was reported to exert significant anti-proliferative effect on specific cancer cell lines, especially in human triple negative breast cancer (MDA-MB-231) and human liver carcinoma (HepG2) cells. In the present study, two human non-cancer origin cell lines, MCF-10A (human breast epithelial cells) and HDFa (human adult dermal fibroblast cells), showed least susceptibility when treated with DCS sub-fraction at concentration range 0–100 µg/mL using 2,5-diphenyl tetrazolium bromide (MTT) assay. Genotoxicity of DCS sub-fraction was assessed through Ames test, in vitro mouse lymphoma assay, and in vitro micronucleus assay. All genotoxicity experiments were tested with the presence and absence of S9 mixture as metabolic activation system. Ames test results showed negative result of mutagenicity as no clear dose-dependent relationship was observed despite mutagenic potential was detected in frame shift-based TA98 and TA1535 Salmonella typhimurium strains. Mouse lymphoma assay produced non-linear dose-dependent effect in experiments without the presence of S9. Meanwhile, experiment with the presence of S9 resulted in an inverse effect of the dose-dependent relationship. In micronucleus assay, the dose-dependent cytotoxicity effect of DCS sub-fraction showed no correlation with the increase number of cells containing micronuclei but appeared to be time-dependent. In conclusion, DCS sub-fraction showed no significant positive results in genotoxicity assays. In vivo genotoxicity assays should be conducted to ensure the safe use of DCS sub-fraction in further exploration for biological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. d’Auzac J, Jacob JL (1989) The composition of latex from Hevea brasiliensis as a lactiferous cytoplasm. In: d’Auzac J, Jacob JL, Chrestin H (eds) Physiology of rubber tree latex. CRC Press Inc., US, pp 59–96

    Google Scholar 

  2. Ramos MV, Demarco D, Costa Souza IC, De Freitas CD (2019) Review: Laticifers, latex, and their role in plant defense. Trend Plant Sci 24(6):553–567

    Article  CAS  Google Scholar 

  3. Tan D, Hu X, Fu L, Kumpeangkeaw A, Ding Z, Sun X, Zhang J (2017) Comparative morphology and transcriptome analysis reveals distinct functions of the primary and secondary laticifer cells in the rubber tree. Sci Rep 7:3126

    Article  Google Scholar 

  4. Daruliza KMA, Lam KL, Yang KL, Priscilla JT, Sunderasan E, Ong MT (2011) Anti-fungal effect of Hevea brasiliensis latex C-serum on Aspergillus niger. Eur Rev Med Pharmacol Sci 15(9):1027–1033

    CAS  Google Scholar 

  5. Lam KL (2018) Cytotoxic effect, anti-proliferative and cell death mechanism of latex C-serum and sub-fractions using cell-based assay, (Ph.D.). Universiti Sains Malaysia, Penang, Malaysia, pp 1–207

  6. OECD (2017), Overview on genetic toxicology test TGs, OECD Series on Testing and Assessment, No. 238, OECD Publishing, Paris. https://doi.org/https://doi.org/10.1787/9789264274761-en. Accessed 11 Sept 2018.

  7. OECD (1997) Test No. 471 Bacterial reverse mutation test, OECD guidelines for the testing of chemicals, Section 4, OECD Publishing, Paris. https://doi.org/https://doi.org/10.1787/20745788. Accessed 26 May 2017

  8. Sugiyama K, Yamada M, Awogi T, Hakura A (2016) The strains recommended for use in bacteria reverse mutation test (OECD 471) can be certified as non-genetically modified organism. Gene Environ 38(2):1–3

    Google Scholar 

  9. OECD (2015) Test No. 490 In vitro mammalian cell gene mutation tests using the thymidine kinase gene, OECD guidelines for the testing of chemicals, Section 4, OECD Publishing, Paris. https://doi.org/https://doi.org/10.1787/9789264242241-en. Accessed 26 May 2017

  10. Moore MM, Honma M, Clement J, Bolcsfoldi G, Burlinson B, Cifone M, Clarke J, Delongchamp R, Durward R, Fellos M, Gollapudi B, Hou S, Jenkinson P, Lloyd M, Mejeska J, Myhr B, O’Donovan M, Omori T, Riach C, SanStankowski RLE Jr, Thakur AK, Van Goethem F, Wakuri S, Yoshimura I (2006) Mouse lymphoma thymidine kinase gene mutation assay: follow-up meeting of the international workshop on genotoxicity testing—aberdeen, scotland, 2003—assay acceptance criteria, positive controls, and data evaluation. Environ Mol Mutagen 47(1):1–5

    Article  CAS  Google Scholar 

  11. Moore MM, Honma M, Clement J, Bolcsfoldi G, Burlinson B, Cifone M, Clarke J, Delongchamp R, Durward R, Gollapudi B, Hou S, Jenkinson P, Lloyd M, Mejeska J, O’Donovan M, Omori T, Riach C, San R, Stankowski LE Jr, Thakur AK, Van Goethem F, Wakuri S, Yoshimura I (2003) Mouse lymphoma thymidine kinase gene mutation assay: International Workshop on Genotoxicity tests Workgroup report—Plymouth, UK 2002. Mutat Res 540(2):127–140

    Article  CAS  Google Scholar 

  12. Schisler MR, Moore MM, Gollapudi BB (2013) In vitro mouse lymphoma (L5178 Tk+/-− 3.7.2C) forward mutation assay. Methods Mol Biol 1044:27–50

    Article  CAS  Google Scholar 

  13. Moore MM, Clive D, Howard BE, Batson AG, Johnson KO (1981) The utilization of trifluorothymidine (TFT) to select for thymidine kinase-deficient (TK−/−) mutants from L5178Y/TK+/− mouse lymphoma cells. Mutat Res Mutagen Relat Subj 85(5):363–378

    Google Scholar 

  14. Lopez-Gomez C, Levy RJ, Sanchez-Quintero MJ, Juanola-Falgorana M, Barca E, Garcia-Diaz B, Tadesse S, Garone C, Hirano M (2017) Deoxycytidine and deoxythymidine treatment for thymidne kinase 2 deficiency. Ann Neurol 81(5):641–652

    Article  CAS  Google Scholar 

  15. OECD (2014) Test No. 487 In vitro mammalian cell micronucleus test, OECD guidelines for the testing of chemicals, Section 4, OECD Publishing, Paris. https://doi.org/https://doi.org/10.1787/20745788. Accessed 26 May 2017

  16. Meireles JR, Cerqueira E (2011) Use of the micronucleus test on Tradescantia (Trad-MCN) to evaluate the genotoxic effects of air pollution. In: Moldoveanu AM (ed) Air Pollution—New Developments, IntechOpen, pp 245–262

  17. Donovan BMJ (2017) Literature review: our current understanding of the mechanism underlying micronuclei-mediated mutagenesis in cancer. Doctoral dissertation, Harvard Medical School

  18. Jacobs MN, Janssens W, Bernauer U, Brandon E, Coecke S, Combes R, Edwards P, Freidig A, Freyberger A, Kolanczyk R, McArdie C, Mekenyan O, Schmieder P, Schrader T, Takeyoshi M, van der Burr B (2008) The use of metabolising systems for in vitro testing of endocrine disruptors. Curr Drug Metab 9(8):796–826

    Article  CAS  Google Scholar 

  19. Kirkland D, Pfuhler S, Tweats D, Aardema M, Corvi R, Darroudi F, Elhajouji A, Glatt H, Hastwell P, Hayashi M, Kasper P, Kirchner S, Lynch A, Marzin D, Maurici D, Meunier JR, Muller L, Nohynek G, Parry J, Parry E, Thybaud V, Tice R, van Bathem J, Vanparys P, White P (2007) How to reduce false positive results when undertaking in vitro genotoxicity testing and thus avoid unnecessary follow-up animal tests: report of an ECVAM Workshop. Mutat Res 628(1):31–55

    Article  CAS  Google Scholar 

  20. Cox JA, Fellows MD, Hashizume T, White PA (2016) Review: The utility of metabolic activation mixtures containing human hepatic post-mitochondrial supernatant (S9) for in vitro genetic toxicity assessment. Mutagenesis 31:117–130

    Article  CAS  Google Scholar 

  21. Moir GFJ (1959) Ultracentrifugation and staining of Hevea latex. Nature 184:1626–1628

    Article  Google Scholar 

  22. Yeang HY, Siti Arija MA, Faridah Y, Sunderasan E (2002) Allergenic proteins of natural rubber latex. Method 27:32–45

    Article  CAS  Google Scholar 

  23. Mossmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  Google Scholar 

  24. Vogel HG, Maas J, Hock FJ, Mayer D (eds) (2006) Drug discovery and evaluation: safety and pharmacokinetic assays. Springer, New York, pp 509–523

    Google Scholar 

  25. McFadyen MC, Melvin WT, Murray GI (2004) Cytochrome P450 enzymes: novel options for cancer therapeutics. Mol Cancer Ther 3(3):363–371

    CAS  Google Scholar 

  26. Paolillo AT, Souza CS, Oliveira ID, Petrilli AS, Toledo RC (2020) CYP genotypes are associated with toxicity and survival in osteosarcoma patients. J Adolesc Young Adult Oncol. https://doi.org/10.1089/jayao.2019.0180.Accessed26August

    Article  Google Scholar 

  27. Ames BN, Gurney EG, Miller JA, Bartsch H (1972) Carcinogens as frame shift mutagens: metabolites and derivatives of 2-acetylaminofluorene and other aromatic amine carcinogens. Proc Nat Acad Sci 69(11):3128–3132

    Article  CAS  Google Scholar 

  28. Lara K, Antonius TL, Andreas HG (2019) Mechanistic reactivity descriptors for the prediction of Ames mutagenicity of primary aromatic amines. J Chem Inf Model 59(2):668–672

    Article  Google Scholar 

  29. Azmin I, Marinah MA, Shamsul BAR, Ong CW, Fauziah TA, Aidilla M (2018) Determination of polyphenol contents in Hevea brasiliensis and rubber-processing effluent. Malays J Anal Sci 22(2):185–196

    Google Scholar 

  30. Moore MM, Harrinton-Brock K, Cole J (1999) Review: Issues for conducting the microtiter version of the mouse lymphoma thymidine kinase (TK) assay and a critical review of data generated in a collaborative via using the microtiter method. Mutagenesis 14(3):271–281

    Article  CAS  Google Scholar 

  31. Utani K, Kohno Y, Okamoto A, Shimizu N (2010) Emergence of micronuclei and their effects on the fate of cells under replication stress. PLoS ONE 5:e10089

    Article  Google Scholar 

  32. Obe G, Beek B, Vaidya VG (1975) The human leukocyte test system. III. Premature chromosome condensation from chemically and x-ray induced micronuclei. Mutat Res 27:89–101

    Article  CAS  Google Scholar 

  33. Kalsbeek D, Golsteyn RM (2017) Review: G2/M-phase checkpoint adaptation and micronuclei formation as mechanisms that contributed to genomic instability in human cells. Int J Mol Sci 18:2344–2360

    Article  Google Scholar 

  34. Hoffelder DR, Luo L, Burke NA, Watkins SC, Gollin SM, Saunders WS (2004) Resolution of anaphase bridges in cancer cells. Chromosoma 112:389–397

    Article  Google Scholar 

  35. Luzhna LY, Kathiria P, Kovalchuk O (2013) Micronuclei in genotoxicity assessment: from genetics to epigenetics and beyond. Front Genet 4(131):1–17

    CAS  Google Scholar 

  36. Terradas M, Martin M, Tusell L, Genesca A (2009) DNA lesions sequestered in micronuclei induce a local defective-damage response. DNA Repair (Amst) 8:1225–1234

    Article  CAS  Google Scholar 

  37. Tang HM, Tang HL (2018) Anastasis: recovery from the brink of cell death. R Soc Open sci 5:180442. https://doi.org/10.1098/rsos.180442

    Article  CAS  Google Scholar 

  38. Terradas M, Martin M, Tusell L, Genesca A (2010) Genetic activities in micronuclei: is the DNA entrapped in micronuclei lost for the cell? Mutat Res 705:60–67

    Article  CAS  Google Scholar 

  39. Decordier I, Cundari E, Kirsch-Volders M (2008) Survival of aneuploid, micronucleated and/or polyploid cells: crosstalk between ploidy control and apoptosis. Mutat Res 651:30–39

    Article  CAS  Google Scholar 

  40. Hintzsche H, Hemmann U, Poth A, Utesch D, Lott J, Stopper H (2017) Review: fate of micronuclei and micronucleated cells. Rev Mutat Res 771:85–98

    Article  CAS  Google Scholar 

  41. Tang ZZ, Yang J, Wang X, Zeng M, Wang J, Wang A et al (2018) Active DNA end processing in micronuclei of ovarian cancer cells. BMC Cancer 18:426–436

    Article  Google Scholar 

  42. Ferreira M, Mendonca RJ, Coutinho-Netto J, Mulato M (2009) Angiogenic properties of natural rubber latex biomembranes and the serum fraction of Hevea brasiliensis. Braz J Phys 39(3):565–569

    Article  Google Scholar 

  43. Maron DM, Ames BN (1983) Revised methods for the Salmonella mutagenicity test. Mutat Res 113(3–4):173–215

    Article  CAS  Google Scholar 

  44. Hamel A, Roy M, Proudlock R (2016) The bacterial reverse mutation test. Genet Toxicol Test. https://doi.org/10.1016/B978-0-12-800764-8.00004-5.Accessed26May2017.80-130

    Article  Google Scholar 

  45. Mortelmans KE, Zeiger E (2000) The ames salmonella/microsome mutagenicity assay. Mutat Res 455(1–2):29–60

    Article  CAS  Google Scholar 

  46. Simmon VF, Kauhanen K, Tardiff R (1977) Mutagenic activities of chemicals identified in drinking water. In: Scott D, Bridges B, Sobels F (eds) Progress in genetic toxicology. Elsevier, Amsterdam, pp 249–258

    Google Scholar 

  47. Brusick DJ, Simmon VF, Rosenkranz HS, Ray VA, Stafford RS (1980) An evaluation of the Escherichia coli WP2 and WP2 uvrA reverse mutation assay. Mutat Res 76:169–190

    Article  CAS  Google Scholar 

  48. Williams RV, DeMarini DM, Stankowski LF, Escobar PA, Zeiger E, Howe J et al (2019) Are all bacterial strains required by OECD mutagenicity test guideline TG471 needed? Mutat Res Gen Toxicol Environ 848:503081

    Article  CAS  Google Scholar 

  49. Gatehouse D (2012) Bacterial mutagenicity assays: test methods. In: James MP, Elizabeth MP (eds) Genetic toxicology: methods in molecular biology. Springer Protocol, Humana Press, New York, pp 38–51

    Google Scholar 

Download references

Acknowledgements

This work was supported by Rubber Research Institute Malaysia (RRIM) [under research project SEAC S13BTP0460]; and the Universiti Sains Malaysia (USM), Penang Malaysia Fundamental Research Grant Scheme (FRGS) (FRGS/1/2014/SG03/USM/02/1).

Author information

Authors and Affiliations

Authors

Contributions

YKL, OMT, and SS designed and performed the experiments, processed experimental data, and wrote the manuscript. YKL and SS performed the statistical analyses and assisted in manuscript writing. ES and ARN assisted in result interpretation. SS, OMT, and ES supervised the project. All authors discussed the results and contributed to the manuscript.

Corresponding authors

Correspondence to Ong Ming Thong or Subramaniam Sreeramanan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, Y.K., Thong, O.M., Sunderasan, E. et al. Cytotoxicity and genotoxicity of Hevea brasiliensis latex C-serum DCS sub-fraction as anticancer agents. J Rubber Res 23, 273–285 (2020). https://doi.org/10.1007/s42464-020-00056-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42464-020-00056-6

Keywords

Navigation