Skip to main content
Log in

Undoped highly efficient green and white TADF-OLEDs developed by DMAC-BP: manufacturing available via interface engineering

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report on the development of green and white OLEDs with high efficiency based on Bis(4-(9,9-dimethylacridin-10(9H)-yl) phenyl)methanone (DMAC-BP) manufactured by a facile vacuum evaporation technique via device interfaces engineering. Single, double, and three organic layer undoped OLEDs based on DMAC-BP have been fabricated. Among the developed green devices, the performance of three-layer structured OLEDs is the optimum when mCP (1,3-Bis(carbazol-9-yl)benzene) works as the hole transport layer (HTL) and electron block layer (EBL). The measured maximum external quantum efficiency (EQE), current efficiency (CE), power efficiency (PE), and luminance are 8.1%, 25.9 cd/A, 20.3 lm/W, and 42,230 cd/m2, respectively. Importantly, the OLEDs retain the most of their performance at 1000 cd/m2, and the EQE, CE, and PE are 7.2%, 23.7 cd/A, and 19.1 lm/W, respectively. The achieved high efficiency is attributed to the bipolar transport characteristics of DMAC-BP and the matched bandgap between HTL and emission layer (EML). In addition, WOLEDs with DMAC-BP as green layer are all warm white devices. Among them, the structure of green-red-blue (device W3) demonstrates the best performance with a maximum EQE and brightness of 4.4% and 7525 cd/m2. Our findings will facilitate the great potential applications of undoped TADF emitters, and establish a good foundation for the preparation of high-efficiency and low-cost commercial OLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. C.W. Tang, S.A. VanSlyke, Appl. Phys. Lett. 51, 913–915 (1987)

    CAS  Google Scholar 

  2. J. Wu, H. Wang, Z. Su, M. Zhang, X. Hu, Y. Wang, Z. Wang, B. Zhong, W. Zhou, J. Liu, G. Xing, ACS Appl. Mater. Inter. 9, 38745–38754 (2017)

    CAS  Google Scholar 

  3. Z. Lu, G. Zhou, M. Song, D. Wang, P. Huo, W. Fan, H. Dong, H. Tang, F. Yan, G. Xing, J. Mater. Chem. A 7, 13986–14000 (2019)

    CAS  Google Scholar 

  4. S.Y. Kim, W.I. Jeong, C. Mayr, Y.S. Park, K.H. Kim, J.H. Lee, C.K. Moon, W. Brutting, J.J. Kim, Adv. Funct. Mater. 23, 3896–3900 (2013)

    CAS  Google Scholar 

  5. Z. Wang, H. Wang, Z. Hao, Z. Ma, H. Liu, M. Zhang, Y. Cheng, J. Wu, B. Zhong, L. Xia, W. Yao, W. Zhou, T. Zhang, P. Sun, G.Z. Xing, ACS Appl. Energy Mater. 1, 5336–5346 (2018)

    CAS  Google Scholar 

  6. R. Liguori, A. Botta, S. Pragliola, A. Rubino, V. Venditto, A. Velardo, S. Aprano, M.G. Maglione, C.T. Prontera, T. Fasolino, A De Girolamo Del Mauro. Minarini. Semicond. Sci. Technol. 32, 065006 (2017)

    Google Scholar 

  7. Z. Lu, F. He, C.Y. Hsieh, X. Wu, M. Song, X. Liu, Y. Liu, S. Yuan, H. Dong, S. Han, P. Du, G.Z. Xing, ACS Appl. Nano Mater. 2, 1664–1674 (2019)

    CAS  Google Scholar 

  8. C. Liu, S.H. Ding, Y.Q. Peng, B. Yao, L. Sun, S.N. Xu, Q.Y. Dai, Z.W. Zhou, Semicond. Sci. Technol. 34, 075034 (2019)

    CAS  Google Scholar 

  9. J. Wu, Z. Ma, Z. Hao, J.T. Zhang, P. Sun, M. Zhang, Y. Liu, Y. Cheng, Y. Li, B. Zhong, T. Zhang, L. Xia, W. Yao, X. Huang, H. Wang, H. Liu, F. Yan, C.E. Hsu, G.Z. Xing, ACS Appl. Nano Mater. 2, 750–759 (2019)

    Google Scholar 

  10. Y.S. Park, S. Lee, K.H. Kim, S.Y. Kim, J.H. Lee, J.J. Kim, Adv. Funct. Mater. 23, 4914–4920 (2013)

    CAS  Google Scholar 

  11. Y. Liu, Y. Zhang, Q. Kou, Y. Chen, Y. Sun, D. Han, D. Wang, Z. Lu, L. Chen, J. Yang, G.Z. Xing. Nanomaterials 8, 329 (2018)

    Google Scholar 

  12. M. Zhang, H. Wang, Z. Su, C. Tian, J.T. Zhang, Y. Wang, F. Yan, Z. Mai, G.Z. Xing, Nanotechnology 30, 245204 (2019)

    Google Scholar 

  13. J.K. Yuan, Y.F. Dai, Q. Sun, X. Qiao, D.Z. Yang, J. Chen, D.G. Ma, Semicond. Sci. Technol. 34, 105010 (2019)

    CAS  Google Scholar 

  14. Y. Seino, H. Sasabe, Y.J. Pu, J. Kido. Adv. Mater. 26, 1612–1616 (2014)

    CAS  Google Scholar 

  15. Y.H. Chen, J.S. Chen, Y.B. Zhao, D.G. Ma, Appl. Phys. Lett. 100, 213301 (2012)

    Google Scholar 

  16. J.H. Lee, S.H. Lee, S.J. Yoo, K.H. Kim, J.J. Kim, Adv. Funct. Mater. 24, 4681–4688 (2014)

    CAS  Google Scholar 

  17. H. Yersin, A.F. Rausch, R. Czerwieniec, T. Hofbeck, T. Fischer, Coordin. Chem. Rev. 255, 2622–2652 (2011)

    CAS  Google Scholar 

  18. Q. Wang, I.W.H. Oswald, M.R. Perez, H.P. Jia, A.A. Shahub, Q.Q. Qiao, B.E. Gnade, M.A. Omary, Adv. Funct. Mater. 24, 4746–4752 (2014)

    CAS  Google Scholar 

  19. H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Nature 492, 234 (2012)

    CAS  Google Scholar 

  20. J. Li, T. Nakagawa, J. MacDonald, Q. Zhang, H. Nomura, H. Miyazaki, C. Adachi, Adv. Mater. 25, 3319–3323 (2013)

    CAS  Google Scholar 

  21. Q. Zhang, B. Li, S. Huang, H. Nomura, H. Tanaka, Adachi. Nat. Photon. 8, 326 (2014)

    CAS  Google Scholar 

  22. H. Wang, L. Xie, Q. Peng, L. Meng, Y. Wang, Y. Yi, P. Wang, Adv. Mater. 26, 5198–5204 (2014)

    CAS  Google Scholar 

  23. M. Gross, D.C. Müller, H.G. Nothofer, U. Scherf, D. Neher, C. Brauchle, K. Meerholz, Nature 405, 661 (2000)

    CAS  Google Scholar 

  24. H.W. Chen, J.H. Lee, B.Y. Lin, S. Chen, S.T. Wu, Light Sci. Appl. 7, 17168 (2018)

    CAS  Google Scholar 

  25. T. Matsushima, F. Bencheikh, T. Komino, M.R. Leyden, S.D. Sandanayaka, C. Qin, C. Adachi, Nature 572, 502–506 (2019)

    CAS  Google Scholar 

  26. F. Guo, A. Karl, Q.F. Xue, K.C. Tam, K. Forberich, C.J. Brabec, Light-Sci. Appl. 6, e17094 (2017)

    CAS  Google Scholar 

  27. M. Segal, M. Singh, K. Rivoire, S. Difley, T.V. Voorhis, M.A. Baldo, Nat. Mater. 6, 374 (2007)

    CAS  Google Scholar 

  28. M. Zhao, H. Liao, M.S. Molokeev, Y. Zhou, Q. Zhang, Q. Liu, Z. Xia, Light-Sci. Appl. 8, 38 (2019)

    Google Scholar 

  29. P.P. Dai, C. Li, X.T. Zhang, J. Xu, X. Chen, X.L. Wang, Y. Jia, X. Wang, Y.C. Liu, Light-Sci. Appl. 5, e16024 (2016)

    CAS  Google Scholar 

  30. C.D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, Nature 421, 829 (2003)

    Google Scholar 

  31. Y. Wei, G. Xing, K. Liu, G. Li, P. Dang, S. Liang, M. Liu, Z. Cheng, D. Jin, J. Lin, Light-Sci. Appl. 8, 15 (2019)

    Google Scholar 

  32. M.A. Baldo, M.E. Thompson, S.R. Forrest, Nature 403, 750 (2000)

    CAS  Google Scholar 

  33. S. Krotkus, D. Kasemann, S. Lenk, K. Leo, S. Reineke, Light-Sci. Appl. 5, e16121 (2016)

    CAS  Google Scholar 

  34. C. Xiang, W. Koo, F. So, H. Sasabe, J. Kido, Light-Sci. Appl. 2, e74 (2013)

    Google Scholar 

  35. I.S. Park, J. Lee, T. Yasuda. J. Mater. Chem. C 4, 7911–7916 (2016)

    CAS  Google Scholar 

  36. M. Fröbel, T. Schwab, M. Kliem, S. Hofmnn, K. Leo, M.C. Gather, Light-Sci. Appl. 4, e247 (2015)

    Google Scholar 

  37. M. Mesta, M. Carvelli, R.J. De Vries, H. Van Eersel, J.J. Van Der Host, M. Schober, M. Furno, B. Lüssem, K. Leo, P. Loebl, R. Coehoorn, P.A. Bobbert, Nat. Mater. 12, 652 (2013)

    CAS  Google Scholar 

  38. T. Manaka, M. Iwamoto, Light-Sci. Appl. 5, e16040 (2016)

    CAS  Google Scholar 

  39. R. Capelli, S. Toffanin, G. Generali, H. Usta, A. Facchetti, M. Muccini, Nat. Mater. 9, 496 (2010)

    CAS  Google Scholar 

  40. X. Li, F. Xie, S. Zhang, J. Hou, W.C.H. Choy, Light-Sci. Appl. 4, e273 (2015)

    CAS  Google Scholar 

  41. W.C. Wu, H.C. Yeh, L.H. Chan, C.T. Chen, Adv. Mater. 14, 1072 (2012)

    Google Scholar 

  42. T.H. Huang, J.T. Lin, L.Y. Chen, Y.T. Lin, C.C. Wu, Adv. Mater. 18, 602–606 (2006)

    CAS  Google Scholar 

  43. T. Peng, G.M. Li, K.Q. Ye, C.G. Wang, S.S. Zhao, Y. Liu, Z.M. Hou, Y. Wang, J. Mater. Chem. C 1, 2920–2926 (2013)

    CAS  Google Scholar 

  44. F. Wei, T. Zhang, X.C. Liu, X.Y. Li, N. Jiang, Z.W. Liu, Z.Q. Bian, Y.L. Zhao, Z.H. Lu, C.H. Huang, Org. Electron. 15, 3292–3297 (2014)

    CAS  Google Scholar 

  45. Q. Zhang, T. Komino, S. Huang, S. Matsunami, K. Goushi, C. Adachi, Adv. Funct. Mater. 22, 2327–2336 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Dedicated Fund of Institute of Microelectronics, Chinese Academy of Sciences under Grant No. E0YR063004 and E0SR023002, and the China Postdoctoral Science Foundation (Grant Number 2017M611735) and the “Thirteenth five year” science and technology research Project of Jilin province department of education (Grant No. JJKH20200420KJ) and the Program for the development of Science and Technology of Jilin province (Grant No. 20180101206JC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Zhang, Wenlong Jiang or Guozhong Xing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, X., Lin, H., Xue, C. et al. Undoped highly efficient green and white TADF-OLEDs developed by DMAC-BP: manufacturing available via interface engineering. J Mater Sci: Mater Electron 31, 19136–19145 (2020). https://doi.org/10.1007/s10854-020-04450-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04450-z

Navigation