Skip to main content
Log in

Non-functionalized Au nanoparticles can act as high-performing humidity sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We synthesized gold (Au) nanoparticles via a rapid chemical route by reducing chloroauric acid by trisodium citrate. TEM micrographs revealed that particles were spherical with well-defined lattice structures and most of them were within the size range of 8–12 nm. A single surface plasmon resonance peak observed at 525 nm indicated the uniformness of the spherical morphology of the particles. XRD analysis showed that the particles were well crystalline. An impedance-based humidity sensor device was fabricated for depositing these gold nanoparticles in their non-functionalized state and the sensor revealed fast response time of 54 s, high stability and repeatability, and an impressive average sensitivity of 7.57 MΩ/% RH within the humidity range of 10–95%. SEM micrographs revealed the presence of cracks on the film surface and our analysis of the sensing mechanism correlated the sensitivity and the surface cracks along with smaller particle sizes. Our results show that gold nanoparticles without further functionalization are able to perform as a well-performing humidity sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J. Fraden, J.G. King, Am. J. Phys. 66, 357 (1998)

    Google Scholar 

  2. Q.Y. Tang, Y.C. Chan, K. Zhang, Sens. Actuators Chem. 152, 99 (2011)

    CAS  Google Scholar 

  3. H.P. Hong, K.H. Jung, J.H. Kim, K.H. Kwon, C.J. Lee, K.N. Yun, N.K. Min, Nanotechnology 24, 085501 (2013)

    CAS  Google Scholar 

  4. W. Chang, C. Chiu, L. Han, T. Li, K. Xian, K. Chew, Sensors Actuators B. Chem. 174, 563 (2012)

    Google Scholar 

  5. Y. Li, C. Deng, M. Yang, Sens. Actuators B Chem. 165, 7 (2012)

    CAS  Google Scholar 

  6. D. Kou, W. Ma, S. Zhang, J.L. Lutkenhaus, B. Tang, A.C.S. Appl, Mater. Interfaces 10, 41645 (2018)

    CAS  Google Scholar 

  7. J. Xie, H. Wang, Y. Lin, Y. Zhou, Y. Wu, Sens. Actuators B Chem. 177, 1083 (2013)

    CAS  Google Scholar 

  8. F. Liang, L.B. Luo, C.K. Tsang, L. Zheng, H. Cheng, Y.Y. Li, Mater. Res. Bull. 47, 54 (2012)

    CAS  Google Scholar 

  9. B.C. Yadav, S. Sikarwar, R. Yadav, P. Chaudhary, G.I. Dzhardimalieva, N.D. Golubeva, J. Mater. Sci. Mater. Electron. 29, 7770 (2018)

    CAS  Google Scholar 

  10. P. Chaudhary, D.K. Maurya, S. Sikarwar, B.C. Yadav, G.I. Dzhardimalieva, R. Prakash, Eur. Polym. J. 112, 161 (2019)

    CAS  Google Scholar 

  11. D. Zhang, Z. Yang, Z. Wu, G. Dong, Sens. Actuators B Chem. 283, 42 (2019)

    CAS  Google Scholar 

  12. S. Yadav, P. Chaudhary, K.N. Uttam, A. Varma, M. Vashistha, B.C. Yadav, Nanotechnology 30, 295501 (2019)

    CAS  Google Scholar 

  13. M. Bayhan, T. Hashemi, A.W. Brinkman, J. Mater. Sci. 32, 6619 (1997)

    CAS  Google Scholar 

  14. K.K. Dey, D. Bhatnagar, A.K. Srivastava, M. Wan, S. Singh, R.R. Yadav, B.C. Yadav, M. Deepa, Nanoscale 7, 6159 (2015)

    CAS  Google Scholar 

  15. T. Mitsudome, K. Kaneda, Green Chem. 15, 2636 (2013)

    CAS  Google Scholar 

  16. D. Mateo, I. Esteve-Adell, J. Albero, J.F.S. Royo, A. Primo, H. Garcia, Nat. Commun. 7, 1 (2016)

    Google Scholar 

  17. H. Robatjazi, S.M. Bahauddin, C. Doiron, I. Thomann, Nano Lett. 15, 6155 (2015)

    CAS  Google Scholar 

  18. V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, J. Phys. Condens. Matter 29, 203002 (2017)

    Google Scholar 

  19. S. Singha, D. Kim, H. Seo, S.W. Cho, K.H. Ahn, Chem. Soc. Rev. 44, 4367 (2015)

    CAS  Google Scholar 

  20. E. Hutter, D. Maysinger, Trends Pharmacol. Sci. 34, 497 (2013)

    CAS  Google Scholar 

  21. J.M. Pingarrón, P. Yáñez-Sedeño, A. González-Cortés, Electrochim. Acta 53, 5848 (2008)

    Google Scholar 

  22. K. Saha, S.S. Agasti, C. Kim, X. Li, V.M. Rotello, Chem. Rev. 112, 2739 (2012)

    CAS  Google Scholar 

  23. Y. Zhang, W. Chu, A.D. Foroushani, H. Wang, D. Li, J. Liu, C.J. Barrow, X. Wang, W. Yang, Materials (Basel). 7, 5169 (2014)

    Google Scholar 

  24. M. Šetka, F.A. Bahos, D. Matatagui, M. Potoček, Z. Kral, J. Drbohlavová, I. Gràcia, S. Vallejos, Sens. Actuators B Chem. 304, 127337 (2020)

    Google Scholar 

  25. C.N.R. Rao, G.U. Kulkarni, P.J. Thomas, P.P. Edwards, Chem. Soc. Rev. 29, 27 (2000)

    CAS  Google Scholar 

  26. H.C. Lee, C.Y. Wang, C.H. Lin, Sens. Actuators B Chem. 191, 204 (2014)

    CAS  Google Scholar 

  27. P.G. Su, W.L. Shiu, M.S. Tsai, Sens. Actuators B Chem. 216, 467 (2015)

    CAS  Google Scholar 

  28. P.G. Su, S.R. Chiu, Y. Te Lin, Sens. Actuators B Chem. 224, 833 (2016)

    CAS  Google Scholar 

  29. M.A. Squillaci, M.A. Stoeckel, P. Samorì, Nanoscale 11, 19319 (2019)

    CAS  Google Scholar 

  30. L. Zhao, D. Jiang, Y. Cai, X. Ji, R. Xie, W. Yang, Nanoscale 4, 5071 (2012)

    CAS  Google Scholar 

  31. B. Loganathan, B. Karthikeyan, J. Clust. Sci. 28, 1463 (2017)

    CAS  Google Scholar 

  32. B. Loganathan, V.L. Chandraboss, S. Senthilvelan, B. Karthikeyan, Phys. Chem. Chem. Phys. 17, 21268 (2015)

    CAS  Google Scholar 

  33. A. Moores, F. Goettmann, New J. Chem. 30, 1121 (2006)

    CAS  Google Scholar 

  34. M. Paszkiewicz, A. Gołąbiewska, Ł. Rajski, E. Kowal, A. Sajdak, A. Zaleska-Medynska, J. Nanomater. 2016, 1–13 (2016)

    Google Scholar 

  35. D. Kim, J. Resasco, Y. Yu, A.M. Asiri, P. Yang, Nat. Commun. 5, 1 (2014)

    Google Scholar 

  36. Y. Shiraishi, H. Tanaka, H. Sakamoto, S. Ichikawa, T. Hirai, RSC Adv. 7, 6187 (2017)

    CAS  Google Scholar 

  37. K. Gopinath, S. Kumaraguru, K. Bhakyaraj, S. Mohan, K.S. Venkatesh, M. Esakkirajan, P. Kaleeswarran, N.S. Alharbi, S. Kadaikunnan, M. Govindarajan, G. Benelli, A. Arumugam, Microb. Pathog. 101, 1 (2016)

    CAS  Google Scholar 

  38. J.D. Padmos, M. Langman, K. Macdonald, P. Comeau, Z. Yang, M. Filiaggi, P. Zhang, J. Phys. Chem. C 119, 7472 (2015)

    CAS  Google Scholar 

  39. D.S. Sheny, J. Mathew, D. Philip, Spectrochim. Acta A 79, 254 (2011)

    CAS  Google Scholar 

  40. B. Loganathan, V.L. Chandraboss, M. Murugavelu, S. Senthilvelan, B. Karthikeyan, J. Sol-Gel Sci. Technol. 74, 1 (2015)

    CAS  Google Scholar 

  41. S.P. Goutam, G. Saxena, V. Singh, A.K. Yadav, R.N. Bharagava, K.B. Thapa, Chem. Eng. J. 336, 386 (2018)

    CAS  Google Scholar 

  42. H. Farahani, R. Wagiran, M.N. Hamidon, Sensors (Switzerland) 14, 7881 (2014)

    Google Scholar 

Download references

Acknowledgements

Navneet Yadav acknowledged Department of Science and Technology (DST), New Delhi (Project No. SR/S2/CMP-0038/2011) for the financial support. Sarita Yadav would like to express her thanks to DST for Inspire Faculty research Grant (DST/INSPIRE/04/2016/001600). The authors are additionally thankful to Prof. K.N. Uttam, Physics Department, University of Allahabad for UV–Visible measurements.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kajal Kumar Dey or Sarita Yadav.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, N., Chaudhary, P., Dey, K.K. et al. Non-functionalized Au nanoparticles can act as high-performing humidity sensor. J Mater Sci: Mater Electron 31, 17843–17854 (2020). https://doi.org/10.1007/s10854-020-04338-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04338-y

Navigation