Skip to main content
Log in

Controlled hydrothermal synthesis and solar light photocatalysis properties of branched Bi2S3/TiO2 nano-heterostructure

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, we used two simple and inexpensive hydrothermal steps to synthesize Bi2S3 nanoflowers branched on TiO2 nanorod heterostructure. The nanoscale morphology of Bi2S3 deposited on TiO2 nanorods was optimized by controlling the hydrothermal growth temperature of bare Bi2S3 nanoparticles. Under solar lighting, the structural and optical properties, also the photocatalytic performance was systematically evaluated for the bare Bi2S3, bare TiO2 and Bi2S3/TiO2 heterostructures synthesized under optimized conditions. The Bi2S3/TiO2 heterostructures showed an enhanced visible-light absorption ability and photocatalytic efficiency comparing to bare TiO2. Photoluminescence and electrochemical impedance spectroscopy measurements suggest that Bi2S3/TiO2 heterostructures promoted the separation of electron-hole pairs and then enhanced the photocatalytic degradation performance for organic pollutant. The prepared heterostructures showed great stability and reusability. It also displayed enhanced photocatalytic performance for MB degradation, presenting 90% removal efficiency for 240 min, under solar light irradiation. The improved photocatalytic performance was attributed to the large Bi2S3 nanowires branched like nanoflowers structure on TiO2 nanorod arrays. This performance has obviously led to a better separation of electron-hole pair and an improvement in the absorption of light in the visible-light region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. P.T. Lum, K.Y. Foo, N.A. Zakaria, P. Palaniandy, Ash based nanocomposites for photocatalytic degradation of textile dye pollutants: a review. Mater Chem Phys. 241, 122405 (2019)

    Article  Google Scholar 

  2. F.A. Caliman, M. Gavrilescu, Pharmaceuticals, personal care products and endocrine disrupting agents in the environment—a review. Clean: Soil, Air, Water 37(4–5), 277–303 (2009)

    CAS  Google Scholar 

  3. B. Chen, M. Wang, M. Duan, X. Ma, J. Hong, F. Xie, R. Zhang, X. Li, In search of key: protecting human health and the ecosystem from water pollution in China. J Clean Prod 228, 101–111 (2019)

    Article  CAS  Google Scholar 

  4. L. Kaliraj, J.C. Ahn, E.J. Rupa, S. Abid, J. Lu, D.C. Yang, Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. J. Photochem. Photobiol. B 119, 111588 (2019)

    Article  Google Scholar 

  5. D. Zhu, Q. Zhou, Action and mechanism of semiconductor photocatalysis on degradation of organic pollutants in water treatment: a review. Environ. Nanotechnol. Monit. Manag. 12, 100255 (2019)

    Google Scholar 

  6. P.A.K. Reddy, C. Manvitha, R. Boddula, S.V.P. Vattikuti, M.K. Kumar, C. Byon, Single-step hydrothermal synthesis of wrinkled graphene wrapped TiO2 nanotubes for photocatalytic hydrogen production and supercapacitor applications. Mater. Res. Bull. 98, 314–321 (2018)

    Article  Google Scholar 

  7. P.A.K. Reddy, S.V.P. Vattikuti, M.K. Kumar, M.V.P. Sharma, D.K. Valluri, C. Byon, Bismuth oxide cocatalyst and copper oxide sensitizer in Cu2O/TiO2/Bi2O3ternary photocatalyst for efficient hydrogen production under solar light irradiation. Ceram. Int. 44(10), 11783–11791 (2018)

    Article  Google Scholar 

  8. P.A.K. Reddy, S.V.P. Vattikuti, Y.-J. Baik, C. Byon, Eco-friendly, hydrogen fluoride-free, morphology-oriented synthesis of TiO2 with exposed (001) facets. Ceram. Int. 45(2), 2178–2184 (2019)

    Article  Google Scholar 

  9. H.-R. An, S.Y. Park, J.Y. Huh, H. Kim, Y.-C. Lee, Y.B. Lee, Y.-C. Hong, H.-U. Lee, Nanoporous hydrogenated TiO2 photocatalysts generated by underwater discharge plasma treatment for solar photocatalytic applications. Appl. Catal. B 211, 126–136 (2017)

    Article  CAS  Google Scholar 

  10. M. Mehta, A.P. Singh, S. Kumar, S. Krishnamurthy, B. Wickman, S. Basu, Synthesis of MoS2-TiO2 nanocomposite for enhanced photocatalytic and photoelectrochemical performance under visible light irradiation. Vacuum 155, 675–681 (2018)

    Article  CAS  Google Scholar 

  11. C. Gao, J. Li, Z. Shan, F. Huang, H. Shen, Preparation and visible-light photocatalytic activity of In2S3/TiO2 composite. Mater. Chem. Phys. 122(1), 183–187 (2010)

    Article  CAS  Google Scholar 

  12. Y.B. Du, L. Zhang, M. Ruan, C.-G. Niu, X.J. Wen, C. Liang, X.-G. Zhang, G.-M. Zeng, Template-free synthesis of three-dimensional porous CdS/TiO2 with high stability and excellent visible photocatalytic activity. Mater. Chem. Phys. 212, 69–77 (2018)

    Article  CAS  Google Scholar 

  13. C. Gao, J. Huang, H. Li, K. Sun, Y. Lai, M. Jia, L. Jiang, F. Liu, Fabrication of Sb2S3 thin films by sputtering and post-annealing for solar cells. Ceram. Int. 45(3), 3044–3051 (2018)

    Article  Google Scholar 

  14. J.L. Liu, H. Chen, X. Li, H. Wang, Z.K. Zhang, W.W. Pan, G. Yuan, C.L. Yuan, Y.L. Ren, W. Lei, Ultra-fast and high flexibility near-infrared photodetectors based on Bi2Se3nanobelts grown via catalyst-free van der Waals epitaxy. J. Alloy. Compd. 818, 152819 (2019)

    Article  Google Scholar 

  15. X. Li, Y. Wu, H. Ying, M. Xu, C. Jin, Z. He, Q. Zhang, W. Su, S. Zhao, In situ physical examination of Bi2S3 nanowires with a microscope. J. Alloy. Compd. 798, 628–634 (2019)

    Article  CAS  Google Scholar 

  16. C. Tang, Y. Zhang, J. Su, C. Wang, R. Sun, J. Zhang, G. Li, Synthesis and photocatalytic properties of vertically aligned Bi2S3 platelets. Solid State Sci. 51, 24–29 (2016)

    Article  CAS  Google Scholar 

  17. J. Zhang, W. Zhang, Z. Yang, A chemical lithography route to Bi2S3 nanotubes. Appl. Surf. Sci. 257(14), 62396242 (2011)

    Google Scholar 

  18. H. Moreno-García, S. Messina, M. Calixto-Rodriguez, H. Martínez, Physical properties of chemically deposited Bi2S3 thin films using two post-deposition treatments. Appl. Surf. Sci. 311, 729–733 (2014)

    Article  Google Scholar 

  19. G. Zhao, Y. Zheng, Z. He, Z. Lu, L. Wang, C. Li, F. Jiao, C. Deng, Synthesis of Bi2S3 microsphere and its efficient photocatalytic activity under visible-light irradiation. Trans. Nonferrous Met. Soc. China 28(10), 2002–2010 (2018)

    Article  CAS  Google Scholar 

  20. S. Kumar, S. Sharma, S. Sood, A. Umar, S.K. Kansal, Bismuth sulfide (Bi2S3) nanotubes decorated TiO2 nanoparticles heterojunction assembly for enhanced solar light driven photocatalyticactivity. Ceram. Int. 42(15), 17551–17557 (2016)

    Article  CAS  Google Scholar 

  21. S.V.P. Vattikuti, C. Byon, Bi2S3nanorods embedded with MoS2nanosheets composite for photodegradation of phenol red under visible light irradiation. Superlatt. Microstruct. 100, 514–525 (2016)

    Article  CAS  Google Scholar 

  22. X. Ning, J. Huang, L. Li, Y. Gu, S. Jia, R. Qiu, B.H. Kim, Branched Bi2S3/TiO2nano-heterostructure with enhanced photoelectric performance. Mater. Res. Express 6(12), 125029 (2019)

    Article  CAS  Google Scholar 

  23. W. Chakhari, J.B. Naceur, S.B. Taieb, I.B. Assaker, R. Chtourou, Fe-doped TiO2 nanorods with enhanced electrochemical properties as efficient photoanode materials. J. Alloy. Compd. 708, 862–870 (2017)

    Article  CAS  Google Scholar 

  24. M. Grundmann, The Physics of Semiconductors (Springer, New York, 2006)

    Google Scholar 

  25. A. Helal, F.A. Harraz, A.A. Ismail, T.M. Sami, I.A. Ibrahim, Controlled synthesis of bismuth sulfide nanorods by hydrothermal method and their photocatalytic activity. Mater. Des. 102, 202–212 (2016)

    Article  CAS  Google Scholar 

  26. B.D. Cullity, Elements of X-ray diffraction, 2nd edn. (Addison Wesley, Reading, 1978), pp. 162–165

    Google Scholar 

  27. A.L. Patterson, The Scherrer formula for X-ray particle size determination. Phys. Rev. 56(10), 978–982 (1939)

    Article  CAS  Google Scholar 

  28. M. Madoun, R. Baghdad, K. Chebbah, M.A. Bezzerrouk, L. Michez, N. Benramdane, Temperature effect on structural and optoelectronic properties of Bi2S3 nanocrystalline thin films deposited by spray pyrolysis method. Mater. Sci. Semicond. Process. 16(6), 2084–2090 (2013)

    Article  CAS  Google Scholar 

  29. B. Liu, E.S. Aydil, Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131(11), 3985–3990 (2009)

    Article  CAS  Google Scholar 

  30. D. Tuschel, Raman spectroscopy and polymorphism. Spectroscopy 34(3), 10–21 (2014)

    Google Scholar 

  31. S. Challagulla, K. Tarafder, R. Ganesan, S. Roy, Structure sensitive photocatalytic reduction of nitroarenes over TiO2. Sci. Rep. 7(1), 8783 (2017)

    Article  Google Scholar 

  32. S.V.P. Vattikuti, J. Shim, C. Byon, 1D Bi2S3 nanorod/2D e-WS2 nanosheet heterojunction photocatalyst for enhanced photocatalytic activity. J. Solid State Chem. 258, 526–535 (2018)

    Article  CAS  Google Scholar 

  33. S.V.P. Vattikuti, J. Shim, C. Byon, Synthesis, characterization, and optical properties of visible light-driven Bi2S3 nanorod photocatalysts. J. Mater. Sci. 28(19), 14282–14292 (2017)

    CAS  Google Scholar 

  34. G. Huang, J. Zhang, F. Jiang, Z. Zhang, J. Zeng, X. Qi, Z. Shen, H. Wang, Z. Kong, J. Xi, Z. Ji, Excellent photoelectrochemical activity of Bi2S3 nanorod/TiO2 nanoplate composites with dominant 001 facets. J. Solid State Chem. 281, 121041 (2019)

    Article  Google Scholar 

  35. R. Guo, G. Zhu, Y. Gao, B. Li, J. Gou, X. Cheng, Synthesis of 3D Bi2S3/TiO2 NTAs photocatalytic system and its high visible light driven photocatalytic performance for organic compound degradation. Sep. Purif. Technol. 226, 315–322 (2019)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Ben Naceur.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bessoussa, F., Naceur, J.B., Samet, L. et al. Controlled hydrothermal synthesis and solar light photocatalysis properties of branched Bi2S3/TiO2 nano-heterostructure. J Mater Sci: Mater Electron 31, 17980–17994 (2020). https://doi.org/10.1007/s10854-020-04350-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04350-2

Navigation