Skip to main content

Advertisement

Log in

Improvement in 1.53-μm-band fluorescence of Er3+/Yb3+-codoped borate glasses based on infrared energy transfer

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Er3+/Yb3+-codoped borate glass consisting of B2O3–WO3–ZnO–Y2O3 was synthesized as a potential gain medium for an Er3+-doped fiber amplifier (EDFA). X-ray diffraction (XRD) patterns and Raman spectra were characterized to investigate the structural behavior of the glass host, and absorption spectra were recorded to investigate the spectroscopic properties of the Er3+/Yb3+-codoped borate glasses according to the Judd–Ofelt theory. The 1.53-μm-band emission spectra of Er3+ under 980-nm excitation were measured to verify the process of energy transfer (ET) from Yb3+ to Er3+, and the decay lifetimes of Yb3+:1020-nm emission were determined to evaluate the ET efficiency (ETE) between Yb3+ and Er3+. The results indicate that a broad 1.53-μm-band emission occurs for Er3+, with a full width at half maximum (FWHM) of approximately 82 nm. Moreover, the emission intensity increases by approximately 66.7% in Er3+/Yb3+-codoped borate glass containing 10.0 mol% Yb3+, which is ascribed to the efficiency ETE of Yb3+:2F5/2 + 4I15/2 → Yb3+:2F7/2 + Er3+:4I11/2. Compared with the previously reported glass systems, the prepared borate glasses have the typical features, including high gain and broad emission at 1.53-μm, which provide a new route to improve the signal gain in the C-band and further develop the short-length optical amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Y. Tian, T. Wei, M. Cai et al., Enhancement of 1.53 μm emission in erbium/cerium-doped germanosilicate glass pumped by common 808 nm laser diode. Appl. Opt. 53, 6148–6154 (2014)

    Article  Google Scholar 

  2. Y. Wu, Y.-H. Han, T.-Q. Li, Enhance of near-IR emission in Er3+-doped bismuthate glasses with Au nanoparticles. J. Optoelectron. Laser 28, 625–629 (2017)

    CAS  Google Scholar 

  3. S. Damodaraiah, V.R. Prasad, Y.C. Ratnakaram, Investigation of Green and 1.53 μm emission characteristics of Er3+ doped bismuth phosphate glasses for laser applications. J. Alloy Compd. 741, 269–280 (2018)

    Article  CAS  Google Scholar 

  4. Y.-Q. Hong, W.-H. Shin, S.-K. Han, APC-EDFA-based scintillation-suppressed photodetection in satellite optical communication. Microw. Opt. Technol. Lett. 61, 2427–2433 (2019)

    Article  Google Scholar 

  5. Y. Gandhi, M.V.R. Rao, C.S. Rao et al., Role of Al2O3 in upconversion and NIR emission in Tm3+ and Er3+ codoped calcium fluoro phosphorous silicate glass system. J. Lumin. 131, 1443–1452 (2011)

    Article  CAS  Google Scholar 

  6. T. Wei, F. Chen, Y. Tian et al., Broadband 1.53 μm emission property in Er3+ doped germa-silicate glass for potential optical amplifier. Opt. Commun. 315, 199–203 (2014)

    Article  CAS  Google Scholar 

  7. Q. Chen, H. Wang, Q. Wang et al., Structural study of the origin of the largest 1.5 μm Er3+ luminescence band width in multicomponent silicate glass. J. Non-cryst. Solids 404, 145–150 (2014)

    Article  CAS  Google Scholar 

  8. Y. Zhou, D. Yin, S. Zheng, S. Peng, Y. Qi, F. Chen, G. Yang, Improvement of 1.53 μm emission and energy transfer of Yb3+/Er3+ co-doped tellurite glass and fiber. Opt. Fiber Technol. 19, 507–513 (2013)

    Article  CAS  Google Scholar 

  9. C.R. Kesavulu, V.B. Sreedhar, C.K. Jayasankar, K. Jang, D.-S. Shin, S.S. Yi, Structural, thermal and spectroscopic properties of highly Er3+-doped novel oxyfluoride glasses for photonic application. Mater. Res. Bull. 51, 336–344 (2014)

    Article  CAS  Google Scholar 

  10. F. Rivera-López, P. Babu, L. Jyothi, U.R. Rodríguez-Mendoza, I.R. Martín, C.K. Jayasankar, V. Lavín, Er3+–Yb3+codoped phosphate glasses used for an efficient 1.5 μm broadband gain medium. Opt. Mater. 34, 1235–1240 (2012)

    Article  Google Scholar 

  11. A.D. Sontakke, K. Annapurna, Energy transfer based efficient infrared emission at 1.57 μm from Yb3+–Er3+codoped zinc-borobismuthate glasses. Opt. Mater. 35, 472–478 (2013)

    Article  CAS  Google Scholar 

  12. Y. Chen, Y. Hang, M. Huang, Spectroscopic properties of Er3+ ions in bismuth borate glasses. Opt. Mater. 25, 271–278 (2004)

    Article  CAS  Google Scholar 

  13. I.I. Oprea, H. Hesse, K. Betzler, Luminescence of erbium-doped bismuth–borate glasses. Opt. Mater. 28, 1136–1142 (2006)

    Article  CAS  Google Scholar 

  14. S. Pal, A. Sanghi, M.P. Agarwal, Aggarwal, Spectroscopic and structural investigations of Er3+ doped zinc bismuth borate glasses. Mater. Chem. Phys. 133, 151–158 (2012)

    Article  CAS  Google Scholar 

  15. M.B. Saisudha, K.S.R.K. Rao, H.L. Bhat, J. Ramakrishna, The fluorescence of Nd3+ in lead borate and bismuth borate glasses with large stimulated emission cross section. J. Appl. Phys. 80, 4845–4853 (1996)

    Article  CAS  Google Scholar 

  16. M.B. Saisudha, J. Ramakrishna, Optical absorption of Nd3+, Sm3+ and Dy3+ in bismuth borate glasses with large radiative transition probabilities. Opt. Mater. 18, 403–417 (2002)

    Article  CAS  Google Scholar 

  17. J.H. Huang, Y.J. Chen, X.H. Gong, Y.F. Lin, Z.D. Luo, Y.D. Huang, Effect of Ce3+ doping on the spectroscopic properties and 1.55 lm laser operation of Er:Yb:Ce:NaY(WO4)2 crystal. J. Opt. Soc. Am. B 27, 2605–2611 (2010)

    Article  CAS  Google Scholar 

  18. E. Sani, A. Toncelli, M. Tonelli, D.A. Lis, E.V. Zharikov, K.A. Subbotin, V.A. Smirnov, Effect of cerium codoping in Er3+, Ce3+:NaLa(MoO4)2 crystals. J. Appl. Phys. 97, 123531 (2005)

    Article  Google Scholar 

  19. M. Abo-Naf, F.H. El Batal, M.A. Azooz, Characterization of some glasses in the system SiO2, Na2O·RO by infrared spectroscopy. Mater. Chem. Phys. 77, 846–852 (2002)

    Article  Google Scholar 

  20. G. El-Damrawi, K. El-Egili, Characterization of novel CeO2–B2O3 glasses, structure and properties. Physica B 299, 180–186 (2001)

    Article  CAS  Google Scholar 

  21. A. Miguel, M.A. Arriandiaga, R. Morea, J. Fernandez, J. Gonzalo, R. Balda, Down- and up-conversion emissions in Er3+–Yb3+codoped TeO2–ZnO–ZnF2 glasses. J. Lumin. 158, 142–148 (2015)

    Article  CAS  Google Scholar 

  22. S. Tanabe, T. Ohyagi, N. Soga, T. Hanada, Compositional dependence of the Judd-Ofelt parameters of the Er3+ ions in alkali-metal borate glasses. Phys. Rev. B 46, 3305–3310 (1992)

    Article  CAS  Google Scholar 

  23. S. Tanabe, T. Ohyagi, S. Todoroki, T. Hanada, N. Soga, Relation between the Ω6 intensity parameter of Er3+ ions and the 151Eu isomer shift in oxide glasses. J. Appl. Phys. 73, 8451–8454 (1993)

    Article  CAS  Google Scholar 

  24. S. Tanabe, Optical transitions of rare earth ions for amplifiers: how the local structure works in glass. J. Non-cryst. Solids 259, 1–9 (1999)

    Article  CAS  Google Scholar 

  25. J. Qiu, Y. Shimizugawa, Y. Iwabuchi, K. Hirao, Photostimulated luminescence of Ce3+-doped alkali borate glasses. Appl. Phys. Lett. 71, 43–45 (1997)

    Article  CAS  Google Scholar 

  26. S. Zheng, Y. Zhou, D. Yin, X. Xu, Y. Qi, S. Peng, The 1.53 μm spectroscopic properties and thermal stability in Er3+/Ce3+codoped TeO2–WO3–Na2O–Nb2O5 glasses. J. Quant. Spectrosc. Radiat. Transf. 120, 44–51 (2013)

    Article  CAS  Google Scholar 

  27. Y. Qi, Y. Zhou, L. Wu, Silver nanoparticles enhanced 1.53 μm band fluorescence of Er3+/Yb3+codopedtellurite glasses. J. Lumin. 153, 401–407 (2014)

    Article  CAS  Google Scholar 

  28. P. Shengxi, Y. Fengjing, W. Libo, Q. Yawei, Z. Shichao, Y. Dandan, W. Xunsi, Z. Yaxun, Multicolor upconversion emission and energy transfer mechanism in Er3+/Tm3+/Yb3+codopedtellurite glasses. J. Quant. Spectrosc. Radiat. Transf. 147, 155–163 (2014)

    Article  Google Scholar 

  29. S. Porque, B.C. Jiang, V. Hwang, E. Fuflyigin, J. Salley, N. Zao, Peyghambarian, Fluorescence properties of erbium-doped germanate glasses. Proc. SPIE 3942, 60–67 (2000)

    Article  CAS  Google Scholar 

  30. F. Auzel, G. Baldacchini, L. Laversenne, G. Boulon, Radiation trapping and self-quenching analysis in Yb3+, Er3+, and Ho3+ doped Y2O3. Opt. Mater. 24, 103–109 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51675162, 11974102,), Science and Technology Key Project of Henan Province (No. 192102210236), Education Department Project of Henan Province (No. 18B150005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuping Tai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tai, Y., Liu, P., Niu, R. et al. Improvement in 1.53-μm-band fluorescence of Er3+/Yb3+-codoped borate glasses based on infrared energy transfer. J Mater Sci: Mater Electron 31, 19085–19092 (2020). https://doi.org/10.1007/s10854-020-04445-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04445-w

Navigation