Skip to main content
Log in

Abstract

Nickel hydroxides have numerous applications including as battery electrodes, electrochromic devices, electrochemical sensors, and supercapacitors and in such processes as photocatalysis, electrocatalysis, and electrosynthesis. A simple solution growth process for production of beta-Ni(OH)2 has been developed. The process involves dissolution of nickel hydroxide powders in concentrated ammonia to form [Ni(NH3)6](OH)2. If ammonia is allowed to evaporate from the resulting solution, the dissolution process is reversed and crystalline films of beta-Ni(OH)2 are deposited that consist of closely packed micron-sized clumps of thin plates. Addition of sodium aluminate to the solution makes it possible to also prepare alpha nickel hydroxide as free standing membranes at air–water interface. The overall procedure can be described as a green process since it eliminates the environmental burden of by-product production because Ni(OH)2 is simply dissolved and transformed into the desired material without producing waste salts such as ammonium nitrate or ammonium chloride that would be produced by a conventional precipitation approach for Ni(OH)2 membrane or film preparation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. J. McBreen, Nickel Hydroxides, Handbook of Battery Materials, 2nd ed., J.O. Besenhard and C. Daniel, Ed., Verlag GmbH, Wiley-VCH, 2011, p 149–168

    Chapter  Google Scholar 

  2. J.J. Smithrick and P.M. O’Donnell, Nickel-Hydrogen Batteries - An Overview, J. Propul. Power, 1996, 12(5), p 873–878

    Article  CAS  Google Scholar 

  3. C. Chakkaravarthy, P. Periasamy, S. Jegannathan, and K.I. Vasu, The Nickel/Iron Battery, J. Power Sources, 1991, 35(1), p 21–35

    Article  CAS  Google Scholar 

  4. A.K. Shukla, M.K. Ravikumar, and T.S. Balasubramanian, Nickel/Iron Batteries, J. Power Sources, 1994, 51(1–2), p 29–36

    Article  CAS  Google Scholar 

  5. Y. Li, G. Pan, W. Xu, J. Yao, and L. Zhang, Effect of Al Substitution on the Microstructure and Lithium Storage Performance of Nickel Hydroxide, J. Power Sources, 2016, 307, p 114–121

    Article  CAS  Google Scholar 

  6. Y. Li, W. Xu, Y. Zheng, J. Yao, and J. Xiao, Hierarchical Flower-Like Nickel Hydroxide with Superior Lithium Storage Performance, J. Mater. Sci. Mater. Electron., 2017, 28(22), p 17156–17160

    Article  CAS  Google Scholar 

  7. M.E.G. Lyons, A. Cakara, P. O’Brien, I. Godwin, and R.L. Doyle, Redox, pH Sensing and Electrolytic Water Splitting Properties of Electrochemically Generated Nickel Hydroxide Thin Films in Aqueous Alkaline Solution, Int. J. Electrochem. Sci, 2012, 7(11), p 768–811

    Google Scholar 

  8. J. Clausmeyer, J. Masa, E. Ventosa, D. Oehl, and W. Schuhmann, Nanoelectrodes Reveal the Electrochemistry of Single Nickelhydroxide Nanoparticles, Chem. Commun. (Cambridge, U. K.), 2016, 52(11), p 2408–2411

    Article  CAS  Google Scholar 

  9. C. Luan, G. Liu, Y. Liu, L. Yu, Y. Wang, Y. Xiao, H. Qiao, X. Dai, and X. Zhang, Structure Effects of 2D Materials on α-Nickel Hydroxide for Oxygen Evolution Reaction, ACS Nano, 2018, 12(4), p 3875–3885

    Article  CAS  Google Scholar 

  10. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan, Efficient Water Oxidation Using Nanostructured α-Nickel-Hydroxide as an Electrocatalyst, J. Am. Chem. Soc., 2014, 136(19), p 7077–7084

    Article  CAS  Google Scholar 

  11. A.C. Garcia and M.T.M. Koper, Effect of Saturating the Electrolyte with Oxygen on the Activity for the Oxygen Evolution Reaction, ACS Catal., 2018, 8(10), p 9359–9363

    Article  CAS  Google Scholar 

  12. Y. Miao, L. Ouyang, S. Zhou, L. Xu, Z. Yang, M. Xiao, and R. Ouyang, Electrocatalysis and Electroanalysis of Nickel, Its Oxides, Hydroxides and Oxyhydroxides Toward Small Molecules, Biosens. Bioelectron., 2014, 53, p 428–439

    Article  CAS  Google Scholar 

  13. H. Yang, G. Gao, F. Teng, W. Liu, S. Chen, and Z. Ge, Nickel Hydroxide Nanoflowers for Nonenzymatic Electrochemical Glucose Sensor, J. Electrochem. Soc., 2014, 161(10), p B216–B219

    Article  CAS  Google Scholar 

  14. K. Xia, C. Yang, Y. Chen, L. Tian, Y. Su, J. Wang, and L. Li, In Situ Fabrication of Ni(OH)2 Flakes on Ni Foam Through Electrochemical Corrosion as High Sensitive and Stable Binder-Free Electrode for Glucose Sensing, Sens. Actuators B, 2017, 240, p 979–987

    Article  CAS  Google Scholar 

  15. B. Fang, A. Gu, G. Wang, B. Li, C. Zhang, Y. Fang, and X. Zhang, Synthesis Hexagonal β-Ni(OH)2 Nanosheets for Use in Electrochemistry Sensors, Microchim. Acta, 2009, 167(1–2), p 47–52

    Article  CAS  Google Scholar 

  16. T.C. Canevari, F.H. Cincotto, R. Landers, and S.A.S. Machado, Synthesis and Characterization of α-Nickel(II) Hydroxide Particles on Organic-Inorganic Matrix and Its Application in a Sensitive Electrochemical Sensor for Vitamin D Determination, Electrochim. Acta, 2014, 147, p 688–695

    Article  CAS  Google Scholar 

  17. V. Kotok and V. Kovalenko, The Electrochemical Cathodic Template Synthesis of Nickel Hydroxide Thin Films for Electrochromic Devices: Role of Temperature, East.-Eur. J. Enterp. Technol., 2017, 86(2Pt.11), p 28–34

    CAS  Google Scholar 

  18. A.I. Inamdar, A.C. Sonavane, S.M. Pawar, Y.S. Kim, J.H. Kim, P.S. Patil, W. Jung, H. Im, D.-Y. Kim, and H. Kim, Electrochromic and Electrochemical Properties of Amorphous Porous Nickel Hydroxide Thin Films, Appl. Surf. Sci., 2011, 257(22), p 9606–9611

    Article  CAS  Google Scholar 

  19. L. Guo, Y. Ren, J. Liu, S.Y. Chiam, and W.K. Chim, Nanostructuring of Nickel Hydroxide via a Template Solution Approach for Efficient Electrochemical Devices, Small, 2014, 10(13), p 2611–2617

    Article  CAS  Google Scholar 

  20. Y. Liu, R. Wang, and X. Yan, Synergistic Effect between Ultra-Small Nickel Hydroxide Nanoparticles and Reduced Graphene Oxide sheets for the Application in High-Performance Asymmetric Supercapacitor, Sci. Rep., 2015, 5(1), p 11095

    Article  Google Scholar 

  21. Q.S. Song, S.L.I. Chan, Nanostructured Nickel Oxides as Electrode Materials for Supercapacitors, 2009, American Scientific Publishers, pp 97–127 (2009)

  22. Y. Tang, Y. Liu, S. Yu, Y. Zhao, S. Mu, and F. Gao, Hydrothermal Synthesis of a Flower-Like Nano-nickel Hydroxide for High Performance Supercapacitors, Electrochim. Acta, 2014, 123, p 158–166

    Article  CAS  Google Scholar 

  23. H.X. Wang, W. Zhang, H. Chen, and W.T. Zheng, Towards Unlocking High-Performance of Supercapacitors: From Layered Transition-Metal Hydroxide Electrode to Redox Electrolyte, Sci. China: Technol. Sci., 2015, 58(11), p 1779–1798

    Article  CAS  Google Scholar 

  24. P. Oliva, J. Leonardi, J.F. Laurent, C. Delmas, J.J. Braconnier, M. Figlarz, F. Fievet, and A.D. Guibert, Review of the Structure and the Electrochemistry of Nickel Hydroxides and Oxy-hydroxides, J. Power Sources, 1982, 8(2), p 229–255

    Article  CAS  Google Scholar 

  25. D.S. Hall, D.J. Lockwood, C. Bock, and B.R. MacDougall, Nickel Hydroxides and Related Materials: A Review of Their Structures, Synthesis and Properties, Proc. Math. Phys. Eng. Sci., 2015, 471(2174), p 20140792 ((in eng))

    Google Scholar 

  26. T.N. Ramesh, P.V. Kamath, and C. Shivakumara, Classification of Stacking Faults and Their Stepwise Elimination During the Disorder –> Order Transformation of Nickel Hydroxide, Acta Crystallogr. Sect. B, 2006, 62(4), p 530–536

    Article  CAS  Google Scholar 

  27. H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat, Electrochim. Acta, 1966, 11(8), p 1079-IN1071

    Article  Google Scholar 

  28. C. Delmas, C. Faure, L. Gautier, L. Guerlou-Demourgues, and A. Rougier, The Nickel Hydroxide Electrode from the Solid-State Chemistry Point of View, Philos. Trans. R. Soc. Lond. Ser. A, 1996, 354(1712), p 1545–1554

    Article  CAS  Google Scholar 

  29. P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, and N. Munichandraiah, Stabilized α-Ni(OH) 2 as Electrode Material for Alkaline Secondary Cells, J. Electrochem. Soc., 1994, 141(11), p 2956–2959

    Article  CAS  Google Scholar 

  30. M. Miyake and M. Maeda, Dissolution of Nickel Hydroxide in Ammoniacal Aqueous Solutions, Metall. Mater. Trans. B, 2006, 37B(2), p 181–188

    Article  CAS  Google Scholar 

  31. J.A. Dean, Cumulative Formation Constants for Metal Complexed with Inorganic Ligand, Lange’s Handbook of Chemistry, 14th ed., McGraw Hill, New York, 1992, p 8.7

    Google Scholar 

  32. J.A. Dean, Solubility Products, Lange’s Handbook of Chemistry, 14th ed., McGraw-Hill, New York, 1992, p 8.84

    Google Scholar 

  33. F. Flevet and M. Flglarz, Preparation and Study by Electron Microscopy of the Development of Texture with Temperature of a Porous Exhydroxide Nickel Oxide, J. Catal., 1975, 39(3), p 350–356

    Article  Google Scholar 

  34. F.P. Kober, Analysis of the Charge-Discharge Characteristics of Nickel-Oxide Electrodes by Infrared Spectroscopy, J. Electrochem. Soc., 1965, 112(11), p 1064

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen W. Apblett.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vecoven, A., Rahman, D.R. & Apblett, A.W. Green Process for Preparation of Nickel Hydroxide Films and Membranes. J. of Materi Eng and Perform 29, 5602–5608 (2020). https://doi.org/10.1007/s11665-020-05100-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05100-5

Keywords

Navigation