Skip to main content
Log in

Thermophysical-Based Modeling of Material Removal in Powder Mixed Near-Dry Electric Discharge Machining

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Electrical discharge machining (EDM) is a non-conventional method of machining hard materials with intricate shapes. Near-dry electric discharge machining (ND-EDM) is an advanced method of EDM which is eco-friendly and is more efficient in terms of material removal rate (MRR) than traditional EDM. In this research, an approach has been made to perform a new electrical discharge machining operation on EN-31 steel which utilizes metallic powder as an additive along with a gaseous dielectric (for example air) in ND-EDM. This advanced method of machining is known as powder mixed near-dry EDM. This study involves modeling for output process parameter—Material Removal Rate. The mathematical model was developed using the approach of Gaussian heat distribution. FEM modeling was done on ANSYS WORKBENCH 16.0 module. The experiments were performed and comparative study was done between the results obtained by modeling and experiments. The maximum experimental MRR was 7.68 mm3/min, and the error percentage between experimental, mathematical and FEM was under 30%. It was concluded that the modeling was done successfully and results obtained do comply with the methodology of the research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24

Similar content being viewed by others

Abbreviations

F c :

Heat distribution factor

V b :

Discharge or break down voltage, V

I :

Discharge current, A

Q :

Rate of heat supplied at workpiece, W

q′:

Heat supplied, J

Q(t):

Rate of heat flux supplied, W/mm2

A :

Area over which heat flux is acting, mm2

MRRd :

Material removal per discharge, mm3

MRR:

Material removal rate, mm3/min.

γ cr :

Critical concentration ratio, Ncr/N

N cr :

Particle concentration at breakdown, g/l

Nor Navg :

Average particle concentration, g/l

R c :

Critical radius, mm

t B :

Break down time, μs

K Ø :

Constant

η :

Viscosity of dielectric medium, Pas

x :

Inter-electrode gap, mm

s :

Size of individual powder particles, mm

E :

Electric field at a location other than discharge region, V/mm

E o :

Electric field at discharge region, V/mm

P on :

Pulse-on time, μs

P off :

Pulse-off time, μs

V vt :

Total crater volume, mm3

j i :

Volume of individual cylindrical disks, mm3

W i :

Initial mass of the workpiece before machining, g

W f :

Final mass of the workpiece after machining, g

\(\rho\) :

Density of the workpiece, g/mm3

T m :

Machining time for experiments, minutes

References

  1. J.B. Patel, R.S. Darji, and M. Dalai, Powder mixed edm for improvement of mrr and surface finish: a review, Int. J. Recent Sci. Res., 2018, 9(3), p 25218–25226

    Google Scholar 

  2. Y. Shen, Y. Liu, W. Sun, Y. Zhang, H. Dong, C. Zheng, and R. Ji, High-speed near dry electrical discharge machining, J. Mater. Process. Technol., 2016, 233, p 9–18

    Article  CAS  Google Scholar 

  3. S.Z. Chavoshi and X. Luo, Hybrid micro-machining processes: a review, Precis. Eng., 2015, 41, p 1–23

    Article  Google Scholar 

  4. S. Chakraborty, V. Dey, and S.K. Ghosh, A review on the use of dielectric fluids and their effects in electrical discharge machining characteristics, Precis. Eng., 2015, 40, p 1–6

    Article  Google Scholar 

  5. H. Marashi, D.M. Jafarlou, A.A. Sarhan, and M. Hamdi, State of the art in powder mixed dielectric for EDM applications, Precis. Eng., 2016, 46, p 11–33

    Article  Google Scholar 

  6. M.P. Jahan. Micro-electrical discharge machining, in Non-traditional Machining Processes, Springer, London, pp. 111–151 (2013)

  7. J. Singh, R.S. Walia, P.S. Satsangi, and V.P. Singh, Hybrid electric discharge machining process with continuous and discontinuous ultrasonic vibrations on workpiece, Int. J. Mech. Syst. Eng., 2012, 2(1), p 22–33

    CAS  Google Scholar 

  8. K. Oßwald, S. Schneider, L. Hensgen, A. Klink, and F. Klocke, Experimental investigation of energy distribution in continuous sinking EDM, CIRP J. Manufact. Sci. Technol., 2017, 19, p 36–43

    Article  Google Scholar 

  9. H.K. Kansal, S. Singh, and P. Kumar, Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method, Math. Comput. Model., 2008, 47(11–12), p 1217–1237

    Article  Google Scholar 

  10. H.R.F. Shahri, R. Mahdavinejad, M. Ashjaee, and A. Abdullah, A comparative investigation on temperature distribution in electric discharge machining process through analytical, numerical and experimental methods, Int. J. Mach. Tools Manuf, 2017, 114, p 35–53

    Article  Google Scholar 

  11. S. Assarzadeh and M. Ghoreishi, Electro-thermal-based finite element simulation and experimental validation of material removal in static gap single-spark die-sinking electro-discharge machining process, Proc. Inst. Mech. Eng. Part B: J. Eng. Manuf., 2017, 231(1), p 28–47

    Article  Google Scholar 

  12. V.S. Jatti and S. Bagane, Thermo-electric modelling, simulation and experimental validation of powder mixed electric discharge machining (PMEDM) of BeCu alloys, Alexandria Eng. J., 2017, 57(2), p 643–653

    Article  Google Scholar 

  13. Y. Zhao, M. Kunieda, and K. Abe, EDM mechanism of single crystal SiC with respect to thermal, mechanical and chemical aspects, J. Mater. Process. Technol., 2016, 236, p 138–147

    Article  CAS  Google Scholar 

  14. E. Weingärtner, F. Kuster, and K. Wegener, Modeling and simulation of electrical discharge machining, Procedia Cirp, 2012, 2, p 74–78

    Article  Google Scholar 

  15. H. Singh, Experimental study of distribution of energy during EDM process for utilization in thermal models, Int. J. Heat Mass Transf., 2012, 55(19–20), p 5053–5064

    Article  Google Scholar 

  16. S.H. Yeo, W. Kurnia, and P.C. Tan, Critical assessment and numerical comparison of electro-thermal models in EDM, J. Mater. Process. Technol., 2008, 203(1–3), p 241–251

    Article  CAS  Google Scholar 

  17. H.P. Schulze, R. Herms, H. Juhr, W. Schaetzing, and G. Wollenberg, Comparison of measured and simulated crater morphology for EDM, J. Mater. Process. Technol., 2004, 149(1–3), p 316–322

    Article  Google Scholar 

  18. J. Marafona and J.A.G. Chousal, A finite element model of EDM based on the Joule effect, Int. J. Mach. Tools Manuf, 2006, 46(6), p 595–602

    Article  Google Scholar 

  19. R. Snoyes and F. VanDijck, Investigations of EDM operations by means of thermo mathematical models, Ann. CIRP, 1971, 20(1), p 35

    Google Scholar 

  20. F.S. Van Dijck and W.L. Dutre, Heat conduction model for the calculation of the volume of molten metal in electric discharges, J. Phys. D Appl. Phys., 1974, 7(6), p 899

    Article  Google Scholar 

  21. J.V. Beck, Large time solutions for temperatures in a semi-infinite body with a disk heat source, Int. J. Heat Mass Transf., 1981, 24(1), p 155–164

    Article  Google Scholar 

  22. J.F. Liu and Y.B. Guo, Thermal modeling of EDM with progression of massive random electrical discharges, Procedia Manuf., 2016, 5, p 495–507

    Article  Google Scholar 

  23. A. Tlili, F. Ghanem, and N.B. Salah, A contribution in EDM simulation field, Int. J. Adv. Manuf. Technol., 2015, 79(5–8), p 921–935

    Article  Google Scholar 

  24. S.N. Joshi and S.S. Pande, Thermo-physical modeling of die-sinking EDM process, J. Manuf. Process., 2010, 12(1), p 45–56

    Article  Google Scholar 

  25. M.H. Kalajahi, S.R. Ahmadi, and S.N.B. Oliaei, Experimental and finite element analysis of EDM process and investigation of material removal rate by response surface methodology, Int. J. Adv. Manuf. Technol., 2013, 69(1–4), p 687–704

    Article  Google Scholar 

  26. S.T. Jilani and P.C. Pandey, Analysis and modelling of EDM parameters, Precis. Eng., 1982, 4(4), p 215–221

    Article  Google Scholar 

  27. S. Kumar, S. Grover, and R.S. Walia, Analyzing and modeling the performance index of ultrasonic vibration assisted EDM using graph theory and matrix approach, Int. J. Interactive Des. Manuf. (IJIDeM), 2018, 12(1), p 225–242

    Article  Google Scholar 

  28. A. Erden and S. Bilgin. Role of impurities in electric discharge machining, in Proceedings of the Twenty-First International Machine Tool Design and Research Conference, Palgrave, London, pp. 345–350 (1981)

  29. S. Kumar, S. Grover, and R.S. Walia, Effect of hybrid wire EDM conditions on generation of residual stresses in machining of HCHCr D2 tool steel under ultrasonic vibration, Int. J. Interactive Des. Manuf. (IJIDeM), 2018, 12, p 1–19

    Article  Google Scholar 

  30. S. Sundriyal, Vipin, and R.S. Walia, Near dry and powder mixed near dry electric discharge machining, Int. J. Eng. Adv. Technol., 2019, 9(1), p 2021–2025

    Article  Google Scholar 

  31. S. Sundriyal, R.S. Walia, Vipin, and M. Tyagi, Investigation on surface finish in powder mixed near dry electric discharge machining method. Materials Today: Proceedings (2019).

  32. S. Sundriyal, Vipin, and R.S. Walia, Experimental investigation on micro-hardness of EN-31 Die steel in powder mixed near dry electric discharge machining method, Strojniski vestnik – J. Mech. Eng., 2020, 66(3), p 184–192

    Article  Google Scholar 

  33. S. Sundriyal, S. Vipin, and R.S. Walia, Study on the influence of metallic powder in near-dry electric discharge machining, Strojniski vestnik – J. Mech. Eng., 2020, 66(4), p 243–253

    Article  Google Scholar 

  34. S. Sundriyal, R.S. Walia, and Vipin. Powder mixed near dry electric discharge machining parameter optimization for tool wear rate. Advances in Unconventional Machining and Composites, Springer Nature Singapore Pte Ltd (2020)

  35. V.K. Yadav, P. Kumar, and A. Dvivedi, Effect of tool rotation in near-dry EDM process on machining characteristics of HSS, Mater. Manuf. Processes, 2019, https://doi.org/10.1080/10426914.2019.1605171

    Article  Google Scholar 

  36. V.K. Yadav, P. Kumar, and A. Dvivedi, Performance enhancement of rotary tool neardry EDM of HSS by supplying oxygen gas in the dielectric medium, Mater. Manuf. Processes, 2019, https://doi.org/10.1080/10426914.2019.1675889

    Article  Google Scholar 

  37. M.R. Patel, M.A. Barrufet, P.T. Eubank, and D.D. DiBitonto, Theoretical models of the electrical discharge machining process II, The anode erosion model, J. Appl. Phys., 1989, 66(9), p 4104–4111

    Article  CAS  Google Scholar 

  38. R. Bhattacharya, V.K. Jain, and P.S. Ghoshdastidar, Numerical simulation of thermal erosion in EDM process, J.-Inst. Eng. India Part PE Prod. Eng. Div., 1996, 77, p 13–19

    Google Scholar 

  39. V.K. Jain, Advanced Machining Processes, Allied Publishers, New Delhi, 2009

    Google Scholar 

  40. A. Erden and B. Kaftanoglu. Heat transfer modelling of electric discharge machining, in Proceedings of the Twenty-First International Machine Tool Design and Research Conference, Palgrave, London, pp. 351–358 (1981)

  41. P. Madhu, V.K. Jain, T. Sundararajan, and K.P. Rajurkar, Finite element analysis of EDM process, Proc. Adv. Mater. (UK), 1991, 1(3), p 161–173

    Google Scholar 

  42. C.C. Marty, Investigation of surface temperature in electro-discharge machining, J. Eng. Ind., 1977, 99(3), p 682–684

    Article  Google Scholar 

  43. D.D. DiBitonto, P.T. Eubank, M.R. Patel, and M.A. Barrufet, Theoretical models of the electrical discharge machining process. I. A simple cathode erosion model, J. Appl. Phys., 1989, 66(9), p 4095–4103

    Article  CAS  Google Scholar 

  44. B. Ekmekci, A. Tekkaya, and A. Erden, A semi empirical approach for residual stresses in electrical discharge machining, Int. J. Mach. Tool Manuf., 2006, 46, p 858–868

    Article  Google Scholar 

  45. H.K. Kansal, S. Singh, and P. Kumar, Parametric optimization of powder mixed electric discharge machining by response surface methodology, J. Mater. Process. Technol., 2005, 169, p 427–436

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Walia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundriyal, S., Yadav, J., Walia, R.S. et al. Thermophysical-Based Modeling of Material Removal in Powder Mixed Near-Dry Electric Discharge Machining. J. of Materi Eng and Perform 29, 6550–6569 (2020). https://doi.org/10.1007/s11665-020-05110-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05110-3

Keywords

Navigation