Skip to main content
Log in

Fatigue Behavior of 300 M Steel Coated with Water-Based Aluminum Phosphate Coating

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of water-based aluminum phosphate (WAP) coating on the fatigue performance of 300 M steel with coating of primer and finishing layers was studied in the manuscript. The S-N curves showed that the WAP coating could improve the fatigue performance of the 300 M steel. The hydrogen embrittlement test showed that the WAP coating had no effect on the hydrogen embrittlement of the substrate and the uncoated specimens were very sensitive to air corrosion. The results of SEM, XRD, TEM, and nano-indentation tests showed that the finishing layer had excellent surface quality and high anti-damage ability, and the primer layer was loose and porous. However, the primer layer had obvious improving effect on the fatigue performance of the 300 M steel. It was due to the rapid reaction between the substrate and the coating, which improved the surface state of the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Zhang and D. Zhao, Aerosp. Mater. Handbook, 2016, https://doi.org/10.1201/b13044

    Article  Google Scholar 

  2. T.E. Pistochini and M.R. Hill, Effect of Laser Peening on Fatigue Performance in 300 M Steel, Fatigue Fract. Eng. Mater. Struct., 2011, https://doi.org/10.1111/j.1460-2695.2010.01544.x

    Article  Google Scholar 

  3. S.A. Khan and H.K.D. Bhadeshia, Kinetics of Martensitic Transformation in Partially Bainitic 300 M Steel, Mater. Sci. Eng., A, 1990, https://doi.org/10.1016/0921-5093(90)90273-6

    Article  Google Scholar 

  4. L.C. Chang and H.K.D.H. Bhadeshia, Carbon Content of Austenite in Isothermally Transformed 300 M Steel, Mater. Sci. Eng., A, 1994, https://doi.org/10.1016/0921-5093(94)91079-0

    Article  Google Scholar 

  5. R. Roumina, J.D. Embury, O. Bouaziz, and H.S. Zurob, Mechanical Behavior of A Compositionally Graded 300 M Steel, Mater. Sci. Eng., A, 2013, https://doi.org/10.1016/j.msea.2013.04.006

    Article  Google Scholar 

  6. J. Schijve, Fatigue of Structures and Materials, 2009, https://doi.org/10.1007/978-1-4020-6808-9

    Article  Google Scholar 

  7. Q.H. Mazumder, Materials Engineering, Proc. Int. Offshore Mech. Arctic Eng. Symp., 1992, https://doi.org/10.1201/9781315368610-6

    Article  Google Scholar 

  8. J. Winkler, C.T. Georgakis, and G. Fischer, Fretting Fatigue Behavior of High-Strength Steel Monostrands Under Bending Load, Int. J. Fatigue, 2015, 70, p 13–23. https://doi.org/10.1016/j.ijfatigue.2014.08.009

    Article  CAS  Google Scholar 

  9. R. Pérez-Mora, T. Palin-Luc, C. Bathias, and P.C. Paris, Very High Cycle Fatigue of a High Strength Steel Under Sea Water Corrosion: A Strong Corrosion and Mechanical Damage Coupling, Int. J. Fatigue, 2015, 74, p 156–165. https://doi.org/10.1016/j.ijfatigue.2015.01.004

    Article  CAS  Google Scholar 

  10. M.R. Louthan, Hydrogen Embrittlement of Metals: A Primer for the Failure Analyst, J. Fail. Anal. Prev., 2008, 8, p 289–307. https://doi.org/10.1007/s11668-008-9133-x

    Article  Google Scholar 

  11. P.R. Wedden, Effect of Some Metallic Surface Protection Procedures on Fatigue Properties of High and Ultra-High Strength Steels, Trans. IMF, 1961, 38, p 175–185. https://doi.org/10.1080/00202967.1961.11869830

    Article  CAS  Google Scholar 

  12. G. Armstrong, Aerospace Engineering Coatings: Today and Next Five Years, Trans. Institute Metal Finish., 2010, https://doi.org/10.1179/174591909X12596821284674

    Article  Google Scholar 

  13. J. Davis, Surf. Eng., 2008, https://doi.org/10.1109/CDC.1993.325749

    Article  Google Scholar 

  14. D.R. Gabe, Cadmium Electrodeposition: Alternatives to Cadmium and Cyanide, Surf. Eng., 1994, 10, p 41–45. https://doi.org/10.1179/sur.1994.10.1.41

    Article  CAS  Google Scholar 

  15. E.W. Brooman, Corrosion Behavior of Environmentally Acceptable Alternatives to Cadmium and Chromium Coatings: Cadmium, Part I, Metal. Finish., 2000, 98, p 42–50. https://doi.org/10.1016/S0026-0576(00)81602-5

    Article  CAS  Google Scholar 

  16. G. Bolelli, V. Cannillo, L. Lusvarghi, and T. Manfredini, Wear Behaviour of Thermally Sprayed Ceramic Oxide Coatings, Wear, 2006, 261, p 1298–1315. https://doi.org/10.1016/j.wear.2006.03.023

    Article  CAS  Google Scholar 

  17. N. Espallargas, J. Berget, J.M. Guilemany, A.V. Benedetti, and P.H. Suegama, Cr3C2–NiCr and WC–Ni Thermal Spray Coatings As Alternatives to Hard Chromium for Erosion–Corrosion Resistance, Surf. Coat. Technol., 2008, 202, p 1405–1417. https://doi.org/10.1016/j.surfcoat.2007.06.048

    Article  CAS  Google Scholar 

  18. Z. Jifu, L. Min, Z. Kesong, D. Changguang, D. Chunming, and S. Jinbing, Tribological Behavior of HVOF Cermet Coatings as Alternative to Cr-Plating in Artificial Salt-Fog Atmosphere, Rare Metal Mater. Eng., 2016, 45, p 2492–2497. https://doi.org/10.1016/S1875-5372(17)30021-8

    Article  Google Scholar 

  19. B.D. Sartwell, K.O. Legg, S. Jerry, Validation of HVOF WC/Co Thermal Spray Coatings as a Replacement for Hard Chrome Plating on Aircraft Landing Gear, 2004. https://www.researchgate.net/profile/Donald_Parker2/publication/259088399_Validation_of_HVOF_WCCo_Thermal_Spray_Coatings_as_a_Replacement_for_Hard_Chrome_Plating_on_Aircraft_Landing_Gear/links/00b7d529f48591e407000000/Validation-of-HVOF-WC-Co-Thermal-Spra.

  20. K.O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales, and B. Sartwell, The Replacement of Electroplating, Surf. Coat. Technol., 1996, 81, p 99–105. https://doi.org/10.1016/0257-8972(95)02653-3

    Article  CAS  Google Scholar 

  21. A. Ibrahim and C.C. Berndt, Fatigue and Deformation of HVOF Sprayed WC–Co Coatings and Hard Chrome Plating, Mater. Sci. Eng., A, 2007, 456, p 114–119. https://doi.org/10.1016/j.msea.2006.12.030

    Article  CAS  Google Scholar 

  22. K. Padilla, A. Velásquez, J.A. Berrios, and E.S. Puchi Cabrera, Fatigue Behavior of a 4140 Steel Coated with a NiMoAl Deposit Applied by HVOF Thermal Spray, Surface Coatings Technol., 2002, 150, p 151–162. https://doi.org/10.1016/S0257-8972(01)01447-5

    Article  CAS  Google Scholar 

  23. L.Y. Hong, H.J. Han, H. Ha, J.Y. Lee, and D.P. Kim, Development of Cr-free Aluminum Phosphate Binders and Their Composite Applications, Compos. Sci. Technol., 2007, https://doi.org/10.1016/j.compscitech.2006.05.025

    Article  Google Scholar 

  24. D.D.L. Chung, Review: Acid Aluminum Phosphate for the Binding and Coating of Materials, J. Mater. Sci., 2003, https://doi.org/10.1023/A:1024446014334

    Article  Google Scholar 

  25. X. Chen, P. Zhang, D. Wei, H. Zhao, X. Wei, and F. Ding, Tribological Behavior of Aluminum Slurry Coating on 300 M Steel, J. Mater. Eng. Perform., 2017, https://doi.org/10.1007/s11665-017-2820-6

    Article  Google Scholar 

  26. A. Agüero, J.C. del Hoyo, J. García de Blas, M. García, M. Gutiérrez, L. Madueño, and S. Ulargui, Aluminum Slurry Coatings to Replace Cadmium for Aeronautic Applications, Surf. Coat. Technol., 2012, 213, p 229–238. https://doi.org/10.1016/j.surfcoat.2012.10.052

    Article  CAS  Google Scholar 

  27. F. Ding, S. Li, P. Zhang, D. Wei, X. Chen, S. Wang, and Z. Wang, Characterisation and Corrosion Behaviour of WAP Coating on 300 M Steel, Surf. Eng., 2019, https://doi.org/10.1080/02670844.2019.1607992

    Article  Google Scholar 

  28. S. Jegannathan, T.S.N. Sankara Narayanan, K. Ravichandran, and S. Rajeswari, Formation of Zinc Phosphate Coating by Anodic Electrochemical Treatment, Surf. Coat. Technol., 2006, 200, p 6014–6021. https://doi.org/10.1016/j.surfcoat.2005.09.017

    Article  CAS  Google Scholar 

  29. S. Maeda and M. Yamamoto, The Role of Chromate Treatment after Phosphating in Paint Adhesion, Prog. Org. Coat., 1998, 33, p 83–89. https://doi.org/10.1016/S0300-9440(98)00014-9

    Article  CAS  Google Scholar 

  30. F. Fang, J. Jiang, S.-Y. Tan, A. Ma, and J. Jiang, Characteristics of a Fast Low-Temperature Zinc Phosphating Coating Accelerated by an ECO-Friendly Hydroxylamine Sulfate, Surf. Coat. Technol., 2010, 204, p 2381–2385. https://doi.org/10.1016/j.surfcoat.2010.01.005

    Article  CAS  Google Scholar 

  31. A. Hasçalik, E. Ünal, and N. Özdemir, Fatigue Behaviour of AISI, 304 Steel to AISI, 4340 Steel Welded by Friction Welding, J. Mater. Sci., 2006, https://doi.org/10.1007/s10853-005-5478-7

    Article  Google Scholar 

  32. B.D. Beake, V.M. Vishnyakov, and A.J. Harris, Relationship Between Mechanical Properties of Thin Nitride-Based Films and Their Behaviour in Nano-Scratch Tests, Tribol. Int., 2011, https://doi.org/10.1016/j.triboint.2010.12.002

    Article  Google Scholar 

  33. X. Li and B. Bhushan, A Review of Nanoindentation Continuous Stiffness Measurement Technique and Its Applications, Mater. Charact., 2002, https://doi.org/10.1016/S1044-5803(02)00192-4

    Article  Google Scholar 

  34. B. Bhushan and X. Li, Nanomechanical Characterisation of Solid Surfaces and Thin Films, Int. Mater. Rev., 2003, https://doi.org/10.1179/095066003225010227

    Article  Google Scholar 

  35. S. Majumdar, D. Bhattacharjee, and K.K. Ray, Mechanism of Fatigue Failure in Interstitial-Free and Interstitial-Free High-Strength Steel Sheets, Scripta Mater., 2011, 64, p 288–291. https://doi.org/10.1016/j.scriptamat.2010.10.001

    Article  CAS  Google Scholar 

  36. F. Nový, M. Činčala, P. Kopas, and O. Bokůvka, Mechanisms of High-Strength Structural Materials Fatigue Failure in Ultra-Wide Life Region, Mater. Sci. Eng., A, 2007, 462, p 189–192. https://doi.org/10.1016/j.msea.2006.03.147

    Article  CAS  Google Scholar 

  37. B. Podgornik, F. Kafexhiu, A. Nevosad, and E. Badisch, Influence of Surface Roughness and Phosphate Coating on Galling Resistance of Medium-Grade Carbon Steel, Wear, 2020, 446–447, p 203180. https://doi.org/10.1016/j.wear.2019.203180

    Article  CAS  Google Scholar 

  38. S. Hu, M. Muhammad, M. Wang, R. Ma, A. Du, Y. Fan, X. Cao, and X. Zhao, Corrosion Resistance Performance of Nano-Mos2-Containing Zinc Phosphate Coating on Q235 Steel, Mater. Lett., 2020, 265, p 127256. https://doi.org/10.1016/j.matlet.2019.127256

    Article  CAS  Google Scholar 

  39. M. Wang, R. Ma, A. Du, S. Hu, M. Muhammad, X. Cao, Y. Fan, X. Zhao, and J. Wu, Corrosion Resistance of Black Phosphorus Nanosheets Composite Phosphate Coatings on Q235 Steel, Mater. Chem. Phys., 2020, 250, p 123056. https://doi.org/10.1016/j.matchemphys.2020.123056

    Article  CAS  Google Scholar 

  40. A. Acri, S. Beretta, F. Bolzoni, C. Colombo, and L.M. Vergani, Influence of Manufacturing Process on Fatigue Resistance of High Strength Steel Bolts For Connecting Rods, Eng. Fail. Anal., 2020, 109, p 104330. https://doi.org/10.1016/j.engfailanal.2019.104330

    Article  CAS  Google Scholar 

  41. S. Curtis, E.R. de los Rios, C.A. Rodopoulos, and A. Levers, Analysis of the Effects of Controlled Shot Peening on Fatigue Damage of High Strength Aluminium Alloys, Int. J. Fatigue, 2003, 25, p 59–66. https://doi.org/10.1016/S0142-1123(02)00049-X

    Article  CAS  Google Scholar 

  42. W. Zhao, D. Liu, X. Zhang, Y. Zhou, R. Zhang, H. Zhang, and C. Ye, Improving the Fretting and Corrosion Fatigue Performance of 300 M Ultra-High Strength Steel Using the Ultrasonic Surface Rolling Process, Int. J. Fatigue, 2019, 121, p 30–38. https://doi.org/10.1016/j.ijfatigue.2018.11.017

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This project was supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions, China; Natural Science Foundation for Excellent Young Scientists of Jiangsu Province, China (Grant No. BK20180068), China Postdoctoral Science Foundation funded project (Grant No. 2018M630555), Opening Project of Materials Preparation and Protection for Harsh Environment Key Laboratory of Ministry of Industry and Information Technology (Grant No. XCA20013-6), Opening Project of Aero-engine Thermal Environment and Structure Key Laboratory of Ministry of Industry and Information Technology, China (Grant No. CEPE2019005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pingze Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, F., Chen, X., Wei, D. et al. Fatigue Behavior of 300 M Steel Coated with Water-Based Aluminum Phosphate Coating. J. of Materi Eng and Perform 29, 6661–6669 (2020). https://doi.org/10.1007/s11665-020-05122-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05122-z

Keywords

Navigation