Skip to main content
Log in

Microstructure and Mechanical Properties of Forged High Yttria 18Cr-ODS Steels

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Oxide dispersion strengthened (ODS) ferritic steels are candidate materials for clad tubes in the upcoming Generation IV nuclear reactors. In the present work, a powder forging consolidation technique has been used for fabrication of ODS steels. Two alloys having nominal compositions (in weight %) of Fe-18Cr-2W-0.285Ti-0.5Y2O3 and Fe-18Cr-2W-0.571Ti-1Y2O3, respectively, have been studied in this work. The alloys were prepared by mechanical alloying of elemental powders with yttria in a Simoloyer high energy horizontal attritor. The milled powders were consolidated at 1473 K by powder forging in a flowing hydrogen gas atmosphere. Yttria to titanium ratio was kept constant at ~ 1.75 for both the alloys. TEM micrographs of the forged alloys showed fine recrystallized grains with a dispersion of nano-size Y-Ti-O oxide particles. High-resolution transmission electron microscope fringes and the corresponding fast Fourier transformation confirmed the presence of orthorhombic Y2TiO5 oxide particles in a ferrite matrix. These were the predominant oxide particles in the forged alloys. The Y2TiO5 particles were incoherent with the matrix and exhibited a cuboidal morphology. Despite their high yttria content, both the alloys showed high tensile strength and ductility at room temperature and 973 K. Reasons for this are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. K.L. Murty and I. Charit, Structural Materials for Gen-IV Nuclear Reactors: Challenges and Opportunities, J. Nucl. Mater., 2008, 383(1-2), p 189–195

    Article  CAS  Google Scholar 

  2. C.R.F. Azevedo, Selection of Fuel Cladding Material for Nuclear Fission Reactors, Eng. Fail. Anal., 2011, 18(8), p 1943–1962

    Article  CAS  Google Scholar 

  3. G.R. Odette, M.J. Alinger, and B.D. Wirth, Recent Developments in Irradiation-Resistant Steels, Annu. Rev. Mater. Res., 2008, 38(1), p 471–503

    Article  CAS  Google Scholar 

  4. M.P. Phaniraj, D.I. Kim, J.H. Shim, and Y.W. Cho, Microstructure Development in Mechanically Alloyed Yttria Dispersed Austenitic Steels, Acta Mater., 2009, 57(6), p 1856–1864

    Article  CAS  Google Scholar 

  5. S.M. Group and D. Directorate, Research and Development of Oxide Dispersion Strengthened Ferritic Steels for Sodium Cooled Fast Breeder Reactor Fuels Contributors and Collaborators Hokkaido University Professor Shigeharu UKAI Kobelco Research Institute, Inc. Dr. Masayuki FUJIWARA Dr, At. Energy, 2007, p 1–78.

  6. G. Song, Z. Sun, L. Li, X. Xu, M. Rawlings, C.H. Liebscher, B. Clausen, J. Poplawsky, D.N. Leonard, S. Huang, Z. Teng, C.T. Liu, M.D. Asta, Y. Gao, D.C. Dunand, G. Ghosh, M. Chen, M.E. Fine, and P.K. Liaw, Ferritic Alloys with Extreme Creep Resistance via Coherent Hierarchical Precipitates, Sci. Rep., Nature Publishing Group, 2015, 5, p 1–14.

  7. I. Hilger, X. Boulnat, J. Hoffmann, C. Testani, F. Bergner, Y. De Carlan, F. Ferraro, and A. Ulbricht, Fabrication and Characterization of Oxide Dispersion Strengthened (ODS) 14Cr Steels Consolidated by Means of Hot Isostatic Pressing, Hot Extrusion and Spark Plasma Sintering, J. Nucl. Mater., 2016, 472, p 206–214

    Article  CAS  Google Scholar 

  8. Y. de Carlan, J.L. Bechade, P. Dubuisson, J.L. Seran, P. Billot, A. Bougault, T. Cozzika, S. Doriot, D. Hamon, J. Henry, M. Ratti, N. Lochet, D. Nunes, P. Olier, T. Leblond, and M.H. Mathon, CEA Developments of New Ferritic ODS Alloys for Nuclear Applications, J. Nucl. Mater., 2009, 386-388(C), p 430–432

    Article  CAS  Google Scholar 

  9. B. Dousti, R. Mojaver, H.R. Shahverdi, and R.S. Mamoory, Microstructural Evolution and Chemical Redistribution in Fe-Cr-W-Ti-Y2O3 Nanostructured Powders Prepared by Ball Milling, J. Alloys Compd., 2013, 577, p 409–416

    Article  CAS  Google Scholar 

  10. M. Saber, W. Xu, L. Li, Y. Zhu, C.C. Koch, and R.O. Scattergood, Size Effect of Primary Y2O3 Additions on the Characteristics of the Nanostructured Ferritic ODS Alloys: Comparing as-Milled and as-Milled/Annealed Alloys Using S/TEM, J. Nucl. Mater., 2014, 452(1-3), p 223–229

    Article  CAS  Google Scholar 

  11. Q.X. Sun, Y. Zhou, Q.F. Fang, R. Gao, T. Zhang, and X.P. Wang, Development of 9Cr-ODS Ferritic-Martensitic Steel Prepared by Chemical Reduction and Mechanical Milling, J. Alloys Compd., 2014, 598(3), p 243–247

    Article  CAS  Google Scholar 

  12. Z. Oksiuta, M. Lewandowska, K. Kurzydlowski, and N. Baluc, Reduced Activation ODS Ferritic Steel—Recent Development in High Speed Hot Extrusion Processing, Phys. Status Solidi Appl. Mater. Sci., 2010, 207(5), p 1128–1131

    Article  CAS  Google Scholar 

  13. H. Sakasegawa, S. Ukai, M. Tamura, S. Ohtsuka, H. Tanigawa, H. Ogiwara, A. Kohyama, and M. Fujiwara, Creep Constitutive Equation of Dual Phase 9Cr-ODS Steel, J. Nucl. Mater., 2008, 373(1-3), p 82–89

    Article  CAS  Google Scholar 

  14. R. Kasada, S.G. Lee, J. Isselin, J.H. Lee, T. Omura, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, and F. Abe, Anisotropy in Tensile and Ductile-Brittle Transition Behavior of ODS Ferritic Steels, J. Nucl. Mater., 2011, 417(1-3), p 180–184

    Article  CAS  Google Scholar 

  15. S. Ukai and M. Fujiwara, Perspective of ODS Alloys Application in Nuclear Environments, J. Nucl. Mater., 2002, 307, p 749–757

    Article  Google Scholar 

  16. M. Song, C. Sun, J. Jang, C.H. Han, T.K. Kim, K.T. Hartwig, and X. Zhang, Microstructure Refinement and Strengthening Mechanisms of a 12Cr ODS Steel Processed by Equal Channel Angular Extrusion, J. Alloys Compd., 2013, 577, p 247–256

    Article  CAS  Google Scholar 

  17. A.J. London, S. Santra, S. Amirthapandian, B.K. Panigrahi, R.M. Sarguna, S. Balaji, R. Vijay, C.S. Sundar, S. Lozano-Perez, and C.R.M. Grovenor, Effect of Ti and Cr on Dispersion, Structure and Composition of Oxide Nano-Particles in Model ODS Alloys, Acta Mater., 2015, 97, p 223–233

    Article  CAS  Google Scholar 

  18. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, N. Lochet, and A. Deschamps, Influence of Consolidation Methods on the Recrystallization Kinetics of a Fe-14Cr Based ODS Steel, J. Nucl. Mater., 2016, 472, p 143–152

    Article  CAS  Google Scholar 

  19. A. Steckmeyer, M. Praud, B. Fournier, J. Malaplate, J. Garnier, J.L. Béchade, I. Tournié, A. Tancray, A. Bougault, and P. Bonnaillie, Tensile Properties and Deformation Mechanisms of a 14Cr ODS Ferritic Steel, J. Nucl. Mater., 2010, 405(2), p 95–100

    Article  CAS  Google Scholar 

  20. P. Dubuisson, Y. De Carlan, V. Garat, and M. Blat, ODS Ferritic/Martensitic Alloys for Sodium Fast Reactor Fuel Pin Cladding, J. Nucl. Mater., 2012, 428(1-3), p 6–12

    Article  CAS  Google Scholar 

  21. D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, Development of Oxide Dispersion Strengthened (ODS) Ferritic Steel Through Powder Forging, J. Mater. Eng. Perform., 2017, 26(4), p 1817–1824

    Article  CAS  Google Scholar 

  22. D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, High Yttria Ferritic ODS STEELS Through Powder Forging, J. Nucl. Mater., 2017, 488, p 75–82

    Article  CAS  Google Scholar 

  23. A. Kimura, H.S. Cho, N. Toda, R. Kasada, K. Yutani, H. Kishimoto, N. Iwata, S. Ukai, and M. Fujiwara, High Burnup Fuel Cladding Materials R and D for Advanced Nuclear Systems, J. Nucl. Sci. Technol., 2007, 44(3), p 323–328

    Article  CAS  Google Scholar 

  24. S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake, Development of Oxide Dispersion Strengthened Steels for FBR Core Application (II): Morphology Improvement by Martensite Transformation, J. Nucl. Sci. Technol., 1998, 35(4), p 294–300

    Article  CAS  Google Scholar 

  25. D. Kumar, U. Prakash, V.V. Dabhade, K. Laha, and T. Sakthivel, Mechanical Alloying and Powder Forging of 18%Cr Oxide Dispersion-Strengthened Steel Produced Using Elemental Powders, J. Mater. Eng. Perform., 2019, 28(1), p 242–253

    Article  CAS  Google Scholar 

  26. Z. Liu, M. Rakita, X. Wang, W. Xu, and Q. Han, In Situ Formed Al3 Ti Particles in Al Alloy Matrix and Their Effects on the Microstructure and Mechanical Properties of 7075 Alloy, J. Mater. Res., 2014, 29(12), p 1354–1361

    Article  CAS  Google Scholar 

  27. R.L. Klueh, J.P. Shingledecker, R.W. Swindeman, and D.T. Hoelzer, Oxide Dispersion-Strengthened Steels: A Comparison of Some Commercial and Experimental Alloys, J. Nucl. Mater., 2005, 341(2-3), p 103–114

    Article  CAS  Google Scholar 

  28. U. Prakash, T. Raghu, S.V. Kamat, and A.A. Gokhale, The Effect of Mg Addition on Microstructure and Tensile and Stress Rupture Properties of a P/M Al-Fe-Ce Alloy, Scr. Mater., 1998, 39(7), p 867–872

    Article  CAS  Google Scholar 

  29. U. Prakash, T. Raghu, A.A. Gokhale, and S.V. Kamat, Microstructure and Mechanical Properties of RSP/M Al-Fe-V-Si and Al-Fe-Ce Alloys, J. Mater. Sci., 1999, 34(20), p 5061–5065

    Article  CAS  Google Scholar 

  30. S.Y. Zhong, J. Ribis, T. Baudin, N. Lochet, Y. De Carlan, V. Klosek, and M.H. Mathon, The Effect of Ti/Y Ratio on the Recrystallisation Behaviour of Fe-14%Cr Oxide Dispersion-Strengthened Alloys, J. Nucl. Mater., 2014, 452(1-3), p 359–363

    Article  CAS  Google Scholar 

  31. I. Bogachev, E. Grigoryev, O.L. Khasanov, and E. Olevsky, Fabrication of 13Cr-2Mo Ferritic/Martensitic Oxide-Dispersion-Strengthened Steel Components by Mechanical Alloying and Spark-Plasma Sintering, JOM, 2014, 66(6), p 1020–1026

    Article  CAS  Google Scholar 

  32. Z. Oksiuta, Microstructural Changes of Ods Ferritic Steel Powders During Mechanical Alloying, Acta Mech. Autom., 2011, 5(2), p 74–78

    Google Scholar 

  33. H.K.D.H. Bhadeshia, Mechanically Alloyed Metals, Mater. Sci. Technol., 2010, 16(11-12), p 1404–1411

    Article  Google Scholar 

  34. M. Nagini, R. Vijay, K.V. Rajulapati, A.V. Reddy, and G. Sundararajan, Microstructure-Mechanical Property Correlation in Oxide Dispersion Strengthened 18Cr Ferritic Steel, Mater. Sci. Eng. A, 2017, 708, p 451–459

    Article  CAS  Google Scholar 

  35. C.A. Williams, P. Unifantowicz, N. Baluc, G.D.W. Smith, and E.A. Marquis, The Formation and Evolution of Oxide Particles in Oxide-Dispersion-Strengthened Ferritic Steels during Processing, Acta Mater., 2013, 61(6), p 2219–2235

    Article  CAS  Google Scholar 

  36. E.A. Marquis, Core/Shell Structures of Oxygen-Rich Nanofeatures in Oxide-Dispersion Strengthened Fe-Cr Alloys, Appl. Phys. Lett., 2008, 93(18), p 181904

    Article  CAS  Google Scholar 

  37. M. Dadé, J. Malaplate, J. Garnier, F. De Geuser, F. Barcelo, P. Wident, and A. Deschamps, Influence of Microstructural Parameters on the Mechanical Properties of Oxide Dispersion Strengthened Fe-14Cr Steels, Acta Mater., 2017, 127, p 165–177

    Article  CAS  Google Scholar 

  38. Y. Wu, J. Ciston, S. Kräemer, N. Bailey, G.R. Odette, and P. Hosemann, The Crystal Structure, Orientation Relationships and Interfaces of the Nanoscale Oxides in Nanostructured Ferritic Alloys, Acta Mater., 2016, 111, p 108–115

    Article  CAS  Google Scholar 

  39. M. Nagini, K.G. Pradeep, R. Vijay, A.V. Reddy, B.S. Murty, and G. Sundararajan, A Combined Electron Microscopy, Atom Probe Tomography and Small Angle X-Ray Scattering Study of Oxide Dispersion Strengthened 18Cr Ferritic Steel, Mater. Charact., 2020, 164, p 110306

    Article  CAS  Google Scholar 

  40. A. Hirata, T. Fujita, Y.R. Wen, J.H. Schneibel, C.T. Liu, and M.W. Chen, Atomic Structure of Nanoclusters in Oxide-Dispersion-Strengthened Steels, Nat. Mater., 2011, 10(12), p 922–926

    Article  CAS  Google Scholar 

  41. M.C. Brandes, L. Kovarik, M.K. Miller, and M.J. Mills, Morphology, Structure, and Chemistry of Nanoclusters in a Mechanically Alloyed Nanostructured Ferritic Steel, J. Mater. Sci., 2012, 47(8), p 3913–3923

    Article  CAS  Google Scholar 

  42. P. Dou, L. Qiu, S. Jiang, and A. Kimura, Crystal and Metal/Oxide Interface Structures of Nanoparticles in Fe-16Cr-0.1Ti-0.35Y2O3 ODS Steel, J. Nucl. Mater., 2019, 523, p 320–332

    Article  CAS  Google Scholar 

  43. Th. Hahn, Printed Symbols for Crystallographic Items, Int. Tables Crystallogr., 2006, Vol. A, ch. 1.1, p 2–3.

  44. A. Maheshwari and A.J. Ardell, Morphological Evolution of Coherent Misfitting Precipitates in Anisotropic Elastic Media, Phys. Rev. Lett., 1993, 70, p 2305–2308

    Article  CAS  Google Scholar 

  45. N. Mizutani, Y. Tajima, and M. Kato, Phase Relations in the System Y2O3-TiO2, J. Am. Ceram. Soc., 1976, 59(3-4), p 168

    Article  CAS  Google Scholar 

  46. S. Li, Z. Zhou, M. Li, M. Wang, and G. Zhang, Microstructure Characterization and Tensile Properties of 18Cr-4Al-Oxide Dispersion Strengthened Ferritic Steel, J. Alloys Compd., 2015, 648, p 39–45

    Article  CAS  Google Scholar 

  47. M. Nagini, A. Jyothirmayi, R. Vijay, T.N. Rao, A.V. Reddy, K.V. Rajulapati, and G. Sundararajan, Influence of Dispersoids on Corrosion Behavior of Oxide Dispersion-Strengthened 18Cr Steels Made by High-Energy Milling, J. Mater. Eng. Perform., 2016, 25(2), p 577–586

    Article  CAS  Google Scholar 

  48. P. Dou, A. Kimura, R. Kasada, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, S. Jiang, and Z. Yang, TEM and HRTEM Study of Oxide Particles in an Al-Alloyed High-Cr Oxide Dispersion Strengthened Ferritic Steel with Hf Addition, J. Nucl. Mater., 2017, 485, p 189–201

    Article  CAS  Google Scholar 

  49. A. Hirata, T. Fujita, C.T. Liu, and M.W. Chen, Characterization of Oxide Nanoprecipitates in an Oxide Dispersion Strengthened 14YWT Steel Using Aberration-Corrected STEM, Acta Mater., 2012, 60(16), p 5686–5696

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Mr. Shubhneet Arora for his contribution to the TEM experiments in the Department of Metallurgical and Materials Engineering at IIT Roorkee. The authors are also grateful to the Department of Metallurgical and Materials Engineering, IIT Roorkee, and MHRD for providing financial support under Grant Number MHRD/IITR/MMED/16921010, to carry out the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ujjwal Prakash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Prakash, U., Kumar, D. et al. Microstructure and Mechanical Properties of Forged High Yttria 18Cr-ODS Steels. J. of Materi Eng and Perform 29, 6263–6276 (2020). https://doi.org/10.1007/s11665-020-05106-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05106-z

Keywords

Navigation