Skip to main content
Log in

Structural, electronic and mechanical properties of AgIn1−XGaXS2 (X = 0, 0.25, 0.50, 0.75, 1) chalcogenides

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

The structural, electronic and mechanical properties of AgIn1−XGaXS2 (X = 0, 0.25, 0.50, 0.75, 1) chalcogenides are investigated. The crystal structure of ternary semiconductors is the chalcopyrite structure with space group \({\text{I}}\bar{4}2{\text{d}}\). In this work, first principles calculations are carried out based on density functional theory within the local density approximation to analyze the structural, electronic and mechanical properties of chalcogenides. The calculated lattice constant values are in good agreement with the available data. The lattice constants and the energy gap value increase with the increase in concentration of Gallium (Ga) in AgIn1−XGaXS2. The electronic structure reveals that these materials are semiconductors. The calculated elastic constants indicate that these chalcogenide materials are mechanically stable at normal pressure. The semiconducting nature of these materials may prove their applications in solar cells and photovoltaic absorbers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. H Salehi and E Gordanian Mater. Sci. Semicond. Process. 47 51 (2016)

    Article  Google Scholar 

  2. V Kumar and B P Singh Indian J. Phys. 92 29 (2017)

    Google Scholar 

  3. J Lazewski and K Parlinski J. Chem. Phys. 114 1 (2001)

    Article  Google Scholar 

  4. M G Brik J. Condens. Matter Phys. 21 485502 (2009)

    Article  Google Scholar 

  5. H H Jun, Z S Fu, Z B Jun, Y You and X L Hua Phys. Scr. 82 055601 (2010)

    Article  ADS  Google Scholar 

  6. S Sharma, A S Verma and V K Jindal Mater. Sci. Semicond. Process. 26 187 (2014)

    Article  Google Scholar 

  7. S Ullah, U D Haleem, G Murtaza, T Ouahrani, R Khenata, Naeemullah and S B Omran J. Alloys Compd. 617 575 (2014)

    Article  Google Scholar 

  8. S N Rashkeev, S Limpijumnong and W L Lambrecht Phys. Rev. B 59 2737 (1999)

    Article  ADS  Google Scholar 

  9. A Chahed, O Benhelal, S Laksari, B Abbar, B Bouhafs and N Amrane Physica B 367 142 (2005)

    Article  ADS  Google Scholar 

  10. G Kresse and J Hafner Phys. Rev. B 47 558 (1993)

    Article  ADS  Google Scholar 

  11. G Kresse and J Hafner Phys. Rev. B 49 14251 (1994)

    Article  ADS  Google Scholar 

  12. G Kresse and J Furthmuller Comput. Mater. Sci. 6 15 (1996)

    Article  Google Scholar 

  13. G Kresse and J Furthmuller Phys. Rev. B 54 11169 (1994)

    Article  ADS  Google Scholar 

  14. G Kresse and D Joubert Phys. Rev. B 59 1758 (1999)

    Article  ADS  Google Scholar 

  15. A H Reshak Sci. Rep. 7 46415 (2017)

    Article  ADS  Google Scholar 

  16. A H Reshak Phys. Chem. Chem. Phys. 16 10558 (2014)

    Article  Google Scholar 

  17. G E Davydyuk, O Y Khyzhun, A H Reshak, H Kamarudind, G L Myronchuk, S P Danylchuk, A O Fedorchuk, L V Piskach, M Y Mozolyuk and O V Parasyuk Phys. Chem. Chem. Phys. 156 965 (2013)

    Google Scholar 

  18. A H Reshak, Y M Kogut, A O Fedorchuk, O V Zamuruyeva, G L Myronchuk, O V Parasyuk, H Kamarudin, S Auluck, K J Plucinski and J Bila Phys. Chem. Chem. Phys. 15 18979 (2013)

    Article  Google Scholar 

  19. A H Reshak, D Stys, S Auluck and I V Kityk Phys. Chem.Chem. Phys. 13 2945 (2011)

    Article  Google Scholar 

  20. A H Reshak RSC Adv. 4 39565 (2014)

    Article  ADS  Google Scholar 

  21. A H Reshak RSC Adv. 4 63137 (2014)

    Article  ADS  Google Scholar 

  22. S Q Wu, Z F Hou and Z Z Zhu Solid State Commun. 143 425 (2007)

    Article  ADS  Google Scholar 

  23. J F Nye Physical Properties of Crystals (Oxford: Oxford University Press) (1985)

    Google Scholar 

  24. M Born and K Huang Dynamical Theory of Crystal Lattices (Oxford: Clarendon) (1956)

    MATH  Google Scholar 

  25. W Voigt Lehrbuch de Kristallphysik (Leipzig: Terubner) (1928)

    MATH  Google Scholar 

  26. A Reuss and Z Angew Math. Mech. 9 49 (1929)

    Google Scholar 

  27. R Hill Proc. Phys. Soc. Lond. Sec. A 65 349 (1952)

    Article  ADS  Google Scholar 

  28. K A Matori, M H M Zaid, H A A Sidek, M K Halimah, Z A Wahab and M G M Sabri Int. J. Phys. Sci. 5 2212 (2010)

    Google Scholar 

  29. V V Bannikov, I R Shein and A L Ivanovskii Phys. Status Solidi (RRL) 3 89 (2007)

    Article  ADS  Google Scholar 

  30. S F Pugh Philos. Mag. 45 823 (1954)

    Article  Google Scholar 

Download references

Acknowledgement

The support received from the college management is greatly acknowledged. Financial assistance from the UGC [No. F MRP-6831/16 (SERO/UGC)], India, is duly acknowledged with gratitude.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Rajeswarapalanichamy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Padmavathy, R., Amudhavalli, A., Rajeswarapalanichamy, R. et al. Structural, electronic and mechanical properties of AgIn1−XGaXS2 (X = 0, 0.25, 0.50, 0.75, 1) chalcogenides. Indian J Phys 95, 1751–1756 (2021). https://doi.org/10.1007/s12648-020-01841-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01841-0

Keywords

Navigation