Skip to main content
Log in

Genome wide annotation and characterization of young, intact long terminal repeat retrotransposons (In-LTR-RTs) of seven legume species

  • Original Paper
  • Published:
Genetica Aims and scope Submit manuscript

Abstract

Availability of genome sequence of different legume species has provided an opportunity to characterize the abundance, distribution, and divergence of canonical intact long terminal retrotransposons (In-LTR-RT) superfamilies. Among seven legume species, Arachis ipaensis (Aip) showed the highest number of full-length canonical In-LTR-RTs (3325), followed by Glycine max (Gma, 2328), Vigna angularis (Van, 1625), Arachis durensis (Adu, 1348), Lotus japonicus (Lja, 1294), Medicago truncatula (Mtr, 788), and Circer arietinum (Car, 124). Divergence time analysis demonstrated that the amplification timeframe of LTR-RTs dramatically varied in different families. The average insertion time of Copia element varied from 0.51 (Van) to 1.37 million years ago (Mya) (Adu, and Aip), whereas that of Gypsy was between 0.22 (Mtr) and 1.82 Mya (Adu). Bayesian phylogenetic tree analysis suggested that the 1397 and 1917 reverse transcriptase (RT) domains of Copia and Gypsy families of the seven legume species were clustered into 7 and 14 major groups, respectively. The highest proportion (approximately 94.79–100%) of transposable element (TE)-associated genes assigned to pathways was mapped to metabolism-related pathways in all species. The results enabled the structural understanding of full-length In-LTR-RTs and will be valuable resource for the further study of the impact of TEs on gene structure and expression in legume species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Google Scholar 

  • Barghini E, Natali L, Giordani T, Cossu RM, Scalabrin S, Cattonaro F, Imkova H, Vrana J, Dole el J, Morgante M, Cavallini A (2015) LTR retrotransposon dynamics in the evolution of the olive (Olea europaea) genome. DNA Res 22(1):91–100

    CAS  PubMed  Google Scholar 

  • Baucom RS, Estill JC, Chaparro C, Upshaw N, Jogi A, Deragon JM et al (2009) Exceptional diversity, non-random distribution, and rapid evolution of retroelements in the B73 maize genome. PLoS Genet 5:e1000732

    PubMed  PubMed Central  Google Scholar 

  • Bertioli DJ, Cannon SB, Froenicke L, Huang G, Farmer AD, Cannon EK et al (2016) The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. Nat Genet 48:438–446

    CAS  PubMed  Google Scholar 

  • Conesa A, Gotz S (2008) Blast2GO: a comprehensive suite for functional analysis in plant genomics. Int J Plant Genom 2008:619832

    Google Scholar 

  • Dash S, Cannon E et al (2016) PeanutBase and other bioinformatic resources for peanut (chapter 8). In: Thomas Stalker H, Wilson RF (eds) Peanuts genetics, processing, and utilization. AOCS Press, Urbana, pp 241–252

    Google Scholar 

  • Du J, Tian Z, Hans CS, Laten HM, Cannon SB, Jackson SA et al (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    CAS  PubMed  Google Scholar 

  • Eckardt NA (2000) Sequencing the rice genome. Plant Cell 12:2011–2017

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eddy SR (2009) A new generation of homology search tools based on probabilistic inference. Genome Inform 23:205–211

    PubMed  Google Scholar 

  • Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195

    CAS  PubMed  PubMed Central  Google Scholar 

  • El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC et al (2019) The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–D432

    CAS  PubMed  Google Scholar 

  • Ferreira de Carvalho J, de Jager V, van Gurp TP, Wagemaker NC, Verhoeven KJ (2016) Recent and dynamic transposable elements contribute to genomic divergence under asexuality. BMC Genom 17:884

    Google Scholar 

  • Feschotte C, Pritham EJ (2007) DNA transposons and the evolution of eukaryotic genomes. Annu Rev Genet 41:331–368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flavell RB (1986) Repetitive DNA and chromosome evolution in plants. Philos Trans R Soc Lond B Biol Sci 312(1154):227–242

    CAS  PubMed  Google Scholar 

  • Gao D, Jiang N, Wing RA, Jiang J, Jackson SA (2015) Transposons play an important role in the evolution and diversification of centromeres among closely related species. Front Plant Sci 6:216

    PubMed  PubMed Central  Google Scholar 

  • Gaut BS, Morton BR, McCaig BC, Clegg MT (1996) Substitution rate comparisons between grasses and palms: synonymous rate differences at the nuclear gene Adh parallel rate differences at the plastid gene rbcL. Proc Natl Acad Sci USA 93:10274–10279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hollister JD, Smith LM, Guo YL, Ott F, Weigel D, Gaut BS (2011) Transposable elements and small RNAs contribute to gene expression divergence between Arabidopsis thaliana and Arabidopsis lyrata. Proc Natl Acad Sci USA 108(6):2322–2327

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horvath R, Slotte T (2017) The role of small RNA-based epigenetic silencing for purifying selection on transposable elements in Capsella grandiflora. Genome Biol Evol 9(10):2911–2920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hribová E, Neumann P, Matsumoto T, Roux N, Macas J, Dolezel J (2010) Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing. BMC Plant Biol 10:204

    PubMed  PubMed Central  Google Scholar 

  • Hu G, Hawkins JS, Grover CE, Wendel JF (2010) The history and disposition of transposable elements in polyploid Gossypium. Genome 53(8):599–607

    CAS  PubMed  Google Scholar 

  • Hu TT, Pattyn P, Bakker EG, Cao J, Cheng JF et al (2011) The Arabidopsis lyrata genome sequence and thebasis of rapid genome size change. Nat Genet 43(5):476–481

    PubMed  PubMed Central  Google Scholar 

  • Jain M, Misra G, Patel RK, Priya P, Jhanwar S, Khan AW, Shah N, Singh VK, Garg R, Jeena G, Yadav M, Kant C, Sharma P, Yadav G, Bhatia S, Tyagi AK, Chattopadhyay D (2013) A draft genome sequence of the pulse crop chickpea (Cicer arietinum L.). Plant J 74(5):715–729

    CAS  PubMed  Google Scholar 

  • Jayaswal PK, Shanker A, Singh NK (2019). Genome-wide comparative and evolutionary analysis of transposable element of eight legume plants. Indian J Agric Sci. Accepted 12 Sep 2019

  • Kang YJ, Satyawan D, Shim S, Lee T, Lee J, Hwang WJ et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5:8069

    PubMed  PubMed Central  Google Scholar 

  • Katoh K, Asimenos G, Toh H (2009) Multiple alignment of DNA sequences with MAFFT. Methods Mol Biol 537:39–64

    CAS  PubMed  Google Scholar 

  • Kipling D, Warburton PE (1997) Centromeres, CENP-B and Tigger too. Trends Genet 13:141–145. https://doi.org/10.1016/S0168-9525(97)01098-6

    Article  CAS  PubMed  Google Scholar 

  • Lu Q, Li H, Hong Y, Zhang G, Wen S et al (2018) Genome sequencing and analysis of the peanut B-genome progenitor (Arachis ipaensis). Front Plant Sci 9:604

    PubMed  PubMed Central  Google Scholar 

  • Ma J, Bennetzen JL (2004) Rapid recent growth and divergence of rice nuclear genomes. Proc Natl Acad Sci USA 101:12404–12410

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma J, Jackson SA (2006) Retrotransposon accumulation and satellite amplification mediated by segmental duplication facilitate centromere expansion in rice. Genome Res 16(2):251–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ma B, Kuang L, Xin Y, He N (2019) New insights into long terminal repeat retrotransposons in mulberry species. Genes 10(4):285

    CAS  PubMed Central  Google Scholar 

  • Makarevitch I, Waters AJ, West PT, Stitzer M, Hirsch CN, Ross-Ibarra J et al (2015) Transposable elements contribute to activation of maize genes in response to abiotic stress. PLoS Genet 11:e1004915

    PubMed  PubMed Central  Google Scholar 

  • Mascagni F, Giordani T, Ceccarelli M, Cavallini A, Natali L (2017) Genome-wide analysis of LTR-retrotransposon diversity and its impact on the evolution of the genus Helianthus (L.). BMC Genom 18(1):634. https://doi.org/10.1186/s12864-017-4050-6

    Article  CAS  Google Scholar 

  • Nagarajan N, Navajas-Pérez R, Pop M, Alam M, Ming R, Paterson AH, Salzberg SL (2008) Genome-wide analysis of repetitive elements in papaya. Trop Plant Biol 1:191–201

    CAS  Google Scholar 

  • Nussbaumer T, Martis MM, Roessner SK, Pfeifer M, Bader KC, Sharma S et al (2013) MIPS PlantsDB: a database framework for comparative plant genome research. Nucleic Acids Res 41:D1144–D1151

    CAS  PubMed  Google Scholar 

  • Ou S, Jiang N (2018) LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol 176(2):1410–1422. https://doi.org/10.1104/pp.17.01310

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    CAS  PubMed  Google Scholar 

  • Piegu B, Bire S, Arensburger P, Bigot Y (2015) A survey of transposable element classification systems–a call for a fundamental update to meet the challenge of their diversity and complexity. Mol Phylogenet Evol 86:90–109

    CAS  PubMed  Google Scholar 

  • Rayburn AL, Biradar DP, Bullock DG, McMurphy LM (1993) Nuclear DNA content in F1 hybrids of maize. Heredity 70:294–300

    CAS  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  PubMed  Google Scholar 

  • Rossi M, Araujo P, Sluys MV (2001) Survey of transposable elements in sugarcane expressed sequence tags (ESTs). Genet Mol Biol 24(1–4):141–146

    Google Scholar 

  • Sarkar D, Mahato AK, Satya P, Kundu A, Singh S, Jayaswal PK et al (2017) The draft genome of Corchorus olitorius cv. JRO-524 (Navin). Genom Data 12:151–154

    PubMed  PubMed Central  Google Scholar 

  • Sato S, Nakamura Y, Kaneko T, Asamizu E, Kato T, Nakao M et al (2008) Genome structure of the legume, Lotus japonicus. DNA Res 15:227–239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Severin AJ, Cannon SB, Graham MM, Grant D, Shoemaker RC (2011) Changes in twelve homoelogous genomic regions in soybean following three rounds of polyploidy. Plant Cell 23:3129–3136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shockley FW, Backus EA, Ellersieck MR, Johnson DW, McCaslin M (2002) Glandular-haired alfalfa resistance to potato leafhopper (Homoptera: Cicadellidae) and hopperburn: development of resistance indices. J Econ Entomol 95:437–447

    PubMed  Google Scholar 

  • Singh NK, Gupta DK, Jayaswal PK, Mahato AK, Dutta S, Singh S et al (2012) The first draft of the pigeonpea genome sequence. J Plant Biochem Biotechnol 21:98–112

    PubMed  Google Scholar 

  • Solovyev V, Kosarev P, Seledsov I, Vorobyev D (2006) Automatic annotation of eukaryotic genes, pseudogenes and promoters. Genome Biol 7(Suppl 1):S10

    PubMed  PubMed Central  Google Scholar 

  • Swigonova Z, Bennetzen JL, Messing J (2005) Structure and evolution of the r/b chromosomal regions in rice, maize and sorghum. Genetics 169:891–906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tissier A (2012) Glandular trichomes: what comes after expressed sequence tags? Plant J 70:51–68

    CAS  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG et al (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    CAS  PubMed  Google Scholar 

  • Vitte C, Panaud O, Quesneville H (2007) LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss. BMC Genom 8:218

    Google Scholar 

  • Wang H, Liu JS (2008) LTR retrotransposon landscape in Medicago truncatula: more rapid removal than in rice. BMC Genom 9:382

    Google Scholar 

  • Wicker T, Keller B (2007) Genome-wide comparative analysis of copia retrotransposons in Triticeae, rice, and Arabidopsis reveals conserved ancient evolutionary lineages and distinct dynamics of individual copia families. Genome Res 17:1072–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B et al (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    CAS  PubMed  Google Scholar 

  • Wicker T, Gundlach H, Spannagl M, Uauy C, Borrill P, Ramirez-Gonzalez RH et al (2018) Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol 19:103

    PubMed  PubMed Central  Google Scholar 

  • Xu Y, Du J (2014) Young but not relatively old retrotransposons are preferentially located in gene-rich euchromatic regions in tomato (Solanum lycopersicum) plants. Plant J 80:582–591

    CAS  PubMed  Google Scholar 

  • Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35(Web Server issue):W265–W268

    PubMed  PubMed Central  Google Scholar 

  • Yin H, Du J, Wu J, Wei S, Xu Y, Tao S et al (2015) Genome-wide annotation and comparative analysis of long terminal repeat retrotransposons between pear species of P. bretschneideri and P. Communis. Sci Rep 5:17644

    CAS  PubMed  PubMed Central  Google Scholar 

  • Young ND, Debelle F, Oldroyd GE, Geurts R, Cannon SB, Udvardi MK et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480:520–524

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial assistance received from the Indian council for Agriculture Research (ICAR) for Network Project on Transgenic in Crops (NPTC) and ICAR- National Professor, B. P. Pal Chair is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagendra Kumar Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayaswal, P.K., Shanker, A. & Singh, N.K. Genome wide annotation and characterization of young, intact long terminal repeat retrotransposons (In-LTR-RTs) of seven legume species. Genetica 148, 253–268 (2020). https://doi.org/10.1007/s10709-020-00103-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10709-020-00103-5

Keywords

Navigation