Skip to main content

Advertisement

Log in

Mechanisms of Persistent High Primary Production During the Growing Season in the Chukchi Sea

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Persistent high primary production during the growing season in the Chukchi Sea (Arctic Ocean) plays a key role in maintaining an efficient biological carbon pump and diverse Arctic ecosystem. We used a three-dimensional ocean–sea ice–biogeochemical model to simulate monthly averaged net primary production from 1998 to 2015. The results show that the growing season in the Chukchi Sea lasts more than 150 days, with an annual net primary production of 30.85 ± 3.67 Tg C y−1. The mechanisms for maintaining high primary production differ in the southern and northern Chukchi Sea biological hotspots. Nutrient-rich Pacific Winter Water triggers phytoplankton blooms in both hotspots as light intensity increased in spring. After these initial blooms, Bering Summer Water and remnant Pacific Winter Water are the main contributors to nutrient levels and drive primary production during the growing season (May to September) in the southern and northern hotspots, respectively. Nitrate budget estimations in the euphotic zone reveal that after the spring blooms, persistent high primary production in the southern hotspot is mainly fueled by advecting Bering Summer Water through the Bering Strait. In the northern area, vertical mixing plays a critical role in upwelling nutrient-rich Pacific Winter Water from around the Hanna Shoal, where Pacific Winter Water is trapped for a long duration as a result of topography-influenced ocean circulation. Hence, high primary production exists in the northern Chukchi Sea during the summer and early autumn.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Model and Data Archiving

The data used in this paper are publicly available at https://doi.org/10.6084/m9.figshare.12369947.

References

  • Arrigo KR, Mills MM, van Dijken GL, Lowry KE, Pickart RS, Schlitzer R. 2017. Late spring nitrate distributions beneath the ice-covered Northeastern Chukchi Shelf. Journal of Geophysical Research: Biogeosciences 122:2409–17.

    CAS  Google Scholar 

  • Arrigo KR, Pickart RS, Brown ZW, van Dijken GL, Lowry KE, Mills MM, Palmer MA, Balch WM, Bahr F, Bates NR, Benitez-Nelson C, Bowler B, Brownlee E, Ehn JK, Frey KE, Garley R, Laney SR, Lubelczyk L, Mathis J, Matsuoka A, Mitchell BG, Moore GWK, Ortega-Retuerta E, Pal S, Polashenski CM, Reynolds PA, Schieber B, Sosik HM, Stephens M, Swift JH. 2012. Massive Phytoplankton Blooms Under Arctic Sea Ice. Science 336:1408.

    CAS  PubMed  Google Scholar 

  • Arrigo KR, van Dijken G, Pabi S. 2008. Impact of a shrinking Arctic ice cover on marine primary production. Geophysical Research Letters 35(19).

  • Arrigo KR, van Dijken GL. 2004. Annual changes in sea-ice, chlorophyll a, and primary production in the Ross Sea, Antarctica. Deep Sea Research Part II: Topical Studies in Oceanography 51:117–38.

    CAS  Google Scholar 

  • Arrigo KR, van Dijken GL. 2011. Secular trends in Arctic Ocean net primary production. Journal of Geophysical Research 116(C9).

  • Arrigo KR, van Dijken GL. 2015. Continued increases in Arctic Ocean primary production. Progress in Oceanography 136:60–70.

    Google Scholar 

  • Aumont O, Ethé C, Tagliabue A, Bopp L, Gehlen M. 2015. PISCES-v2: an ocean biogeochemical model for carbon and ecosystem studies. Geoscientific Model Development 8:2465–513.

    CAS  Google Scholar 

  • Bates NR. 2006. Air-sea CO2 fluxes and the continental shelf pump of carbon in the Chukchi Sea adjacent to the Arctic Ocean. Journal of Geophysical Research 111(C10).

  • Brown ZW, Arrigo KR. 2012. Contrasting trends in sea ice and primary production in the Bering Sea and Arctic Ocean. ICES Journal of Marine Science 69:1180–93.

    Google Scholar 

  • Brown ZW, Lowry KE, Palmer MA, van Dijken GL, Mills MM, Pickart RS, Arrigo KR. 2015. Characterizing the subsurface chlorophyll a maximum in the Chukchi Sea and Canada Basin. Deep Sea Research Part II: Topical Studies in Oceanography 118:88–104.

    CAS  Google Scholar 

  • Brown ZW, van Dijken GL, Arrigo KR. 2011. A reassessment of primary production and environmental change in the Bering Sea. Journal of Geophysical Research 116(C8).

  • Coachman LK, Aagaard K. 1988. Transports through Bering Strait: annual and interannual variability. Journal of Geophysical Research: Oceans 93:15535–9.

    Google Scholar 

  • Codispoti LA, Kelly V, Thessen A, Matrai P, Suttles S, Hill V, Steele M, Light B. 2013. Synthesis of primary production in the Arctic Ocean: III. Nitrate and phosphate based estimates of net community production. Progress in Oceanography 110:126–50.

    Google Scholar 

  • Corlett WB, Pickart RS. 2017. The Chukchi slope current. Progress in Oceanography 153:50–65.

    Google Scholar 

  • Cota GF, Pomeroy LR, Harrison WG, Jones EP, Peters F, Sheldon WM, Weingartner TR. 1996. Nutrients, primary production and microbial heterotrophy in the southeastern Chukchi Sea: arctic summer nutrient depletion and heterotrophy. Marine Ecology Progress Series 135:247–58.

    Google Scholar 

  • Cota GF, Pomeroy LR. 2007. Arctic Nutrient Database 1904-2000. Version 1.0. UCAR/NCAR—Earth Observing Laboratory. https://doi.org/10.5065/D6RF5S30.

  • Dai A. 2017. Dai and Trenberth global river flow and continental discharge dataset. Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory . https://doi.org/10.5065/D6V69H1T.

    Article  Google Scholar 

  • Gong D, Pickart RS. 2015. Summertime circulation in the eastern Chukchi Sea. Deep-Sea Research Part II 118:18–31.

    Google Scholar 

  • Grebmeier JM, Cooper LW, Feder HM, Sirenko BI. 2006. Ecosystem dynamics of the Pacific-influenced Northern Bering and Chukchi Seas in the Amerasian Arctic. Progress in Oceanography 71(2):331–61.

    Google Scholar 

  • Grebmeier JM. 2012. Shifting patterns of life in the Pacific Arctic and Sub-Arctic seas. Annual Review of Marine Science 4:63–78.

    PubMed  Google Scholar 

  • Grebmeier JM, Bluhm BA, Cooper LW, Danielson SL, Arrigo KR, Blanchard AL, Clarke JT, Day RH, Frey KE, Gradinger RR, Kędra M, Konar B, Kuletz KJ, Lee SH, Lovvorn JR, Norcross BL, Okkonen SR. 2015. Ecosystem characteristics and processes facilitating persistent macrobenthic biomass hotspots and associated benthivory in the Pacific Arctic. Progress in Oceanography 136:92–114.

    Google Scholar 

  • Guo L, Zhang J, Guéguen C. 2004. Speciation and fluxes of nutrients (N, P, Si) from the upper Yukon River. Global Biogeochemical Cycles 18(1).

  • Heon Lee S, Sun Yun M, Kyoung Kim B, Saitoh S, Kang C, Kang S, Whitledge T. 2013. Latitudinal carbon productivity in the Bering and Chukchi Seas during the summer in 2007. Continental Shelf Research 59:28–36.

    Google Scholar 

  • Hill V, Ardyna M, Lee SH, Varela DE. 2017. Decadal trends in phytoplankton production in the Pacific Arctic Region from 1950 to 2012. Deep Sea Research Part II: Topical Studies in Oceanography 152:82–94.

    Google Scholar 

  • Hill V, Cota G. 2005. Spatial patterns of primary production on the shelf, slope and basin of the Western Arctic in 2002. Deep Sea Research Part II: Topical Studies in Oceanography 52:3344–54.

    Google Scholar 

  • Hill VJ, Light B, Steele M, Zimmerman RC. 2018. Light availability and phytoplankton growth beneath Arctic Sea Ice: integrating observations and modeling. Journal of Geophysical Research: Oceans 123:3651–67.

    Google Scholar 

  • Hill VJ, Matrai PA, Olson E, Suttles S, Steele M, Codispoti LA, Zimmerman RC. 2013. Synthesis of integrated primary production in the Arctic Ocean: II. In situ and remotely sensed estimates. Progress in Oceanography 110:107–25.

    Google Scholar 

  • Hirawake T, Shinmyo K, Fujiwara A, Saitoh S. 2012. Satellite remote sensing of primary productivity in the Bering and Chukchi Seas using an absorption-based approach. ICES Journal of Marine Science 69:1194–204.

    Google Scholar 

  • Huntington HP, Danielson SL, Wiese FK, Baker M, Boveng P, Citta JJ, Robertis AD, Dickson DMS, Farley E, George JC, Iken K, Kimmel DG, Kuletz K, Ladd C, Levine R, Quakenbush L, Stabeno P, Stafford K, Stockwell D, Wilson C. 2020. Evidence suggests potential transformation of the Pacific Arctic ecosystem is underway. Nature Climate Change 10:342–8.

    Google Scholar 

  • Jin M, Popova EE, Zhang J, Ji R, Pendleton D, Varpe Ø, Yool A, Lee YJ. 2016. Ecosystem model intercomparison of under-ice and total primary production in the Arctic Ocean. Journal of Geophysical Research: Oceans 121:934–48.

    Google Scholar 

  • Kahru M, Lee Z, Mitchell BG, Nevison CD. 2016. Effects of sea ice cover on satellite-detected primary production in the Arctic Ocean. Biology Letters 12:20160223.

    PubMed  PubMed Central  Google Scholar 

  • Lee SH, Whitledge TE, Kang S. 2007. Recent carbon and nitrogen uptake rates of phytoplankton in Bering Strait and the Chukchi Sea. Continental Shelf Research 27:2231–49.

    Google Scholar 

  • Lewis KM, Arntsen AE, Coupel P, Joy-Warren H, Lowry KE, Matsuoka A, Mills MM, van Dijken GL, Selz V, Arrigo KR. 2018. Photoacclimation of Arctic Ocean phytoplankton to shifting light and nutrient limitation. Limnology and Oceanography 64:284–301.

    Google Scholar 

  • Lin P, Pickart RS, McRaven LT, Arrigo KR, Bahr F, Lowry KE, Stockwell DA, Mordy CW. 2019. Water mass evolution and circulation of the Northeastern Chukchi sea in summer: implications for nutrient distributions. Journal of Geophysical Research: Oceans 124(7):4416–32.

    Google Scholar 

  • Lowry KE, Pickart RS, Mills MM, Brown ZW, van Dijken GL, Bates NR, Arrigo KR. 2015. The influence of winter water on phytoplankton blooms in the Chukchi Sea. Deep-Sea Research Part II 118:53–72.

    CAS  Google Scholar 

  • Lowry KE, van Dijken GL, Arrigo KR. 2014. Evidence of under-ice phytoplankton blooms in the Chukchi Sea from 1998 to 2012. Deep-sea research part II 105:105–17.

    CAS  Google Scholar 

  • Ludwig W, Probst J, Kempe S. 1996. Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10:23–41.

    CAS  Google Scholar 

  • Luo X, Hu X, Nie H, Zhao W, Zhang Y, Wang Y, Qin Y, Dong C, Lu Y, Wei H. 2019. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans. Haiyang Xuebao 41(9):1–12.

    Google Scholar 

  • Madec G and the NEMO team. 2008. NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), No 27, France, ISSN No 1288-1619.

  • Mayorga E, Seitzinger SP, Harrison JA, Dumont E, Beusen AHW, Bouwman AF, Fekete BM, Kroeze C, Van Drecht G. 2010. Global nutrient export from WaterSheds 2 (NEWS 2): model development and implementation. Environmental Modelling & Software 25:837–53.

    Google Scholar 

  • Meier WN, Fetterer F, Savoie M, Mallory S, Duerr R, Stroeve J. 2017. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration, Version 3. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. https://doi.org/10.7265/N59P2ZTG.

  • Moore JK, Doney SC, Glover DM, Fung IY. 2001. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep Sea Research Part II: Topical Studies in Oceanography 49:463–507.

    Google Scholar 

  • Olsen A, Key RM, van Heuven S, Lauvset SK, Velo A, Lin X, Schirnick C, Kozyr A, Tanhua T, Hoppema M, Jutterström S, Steinfeldt R, Jeansson E, Ishii M, Pérez FF, Suzuki T. 2016. The global ocean data analysis project version 2 (GLODAPv2)—an internally consistent data product for the world ocean. Earth System Science Data 8:297–323.

    Google Scholar 

  • Pickart RS, Moore GWK, Mao C, Bahr F, Nobre C, Weingartner TJ. 2016. Circulation of winter water on the Chukchi shelf in early Summer. Deep Sea Research Part II: Topical Studies in Oceanography 130:56–75.

    Google Scholar 

  • Pickart RS, Nobre C, Lin P, Arrigo KR, Ashjian CJ, Ashjian C, Cooper LW, Grebmeier JM, Hartwell I, He J, Itoh M, Kikuchi T, Nishino S, Vagle S. 2019. Seasonal to mesoscale variability of water masses and atmospheric conditions in Barrow Canyon, Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography 162:32–49.

    Google Scholar 

  • Pickart RS, Pratt LJ, Torres DJ, Whitledge TE, Proshutinsky AY, Aagaard K, Agnew TA, Moore GWK, Dail HJ. 2010. Evolution and dynamics of the flow through Herald Canyon in the western Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography 57:5–26.

    Google Scholar 

  • Pisareva MN, Pickart RS, Spall MA, Nobre C, Torres DJ, Moore GWK, Whitledge TE. 2015. Flow of pacific water in the western Chukchi Sea: results from the 2009 RUSALCA expedition. Deep Sea Research Part I: Oceanographic Research Papers 105:53–73.

    Google Scholar 

  • Popova EE, Yool A, Coward AC, Aksenov YK, Alderson SG, de Cuevas BA, Anderson TR. 2010. Control of primary production in the Arctic by nutrients and light: insights from a high resolution ocean general circulation model. Biogeosciences 7:3569–91.

    CAS  Google Scholar 

  • Rousset C, Vancoppenolle M, Madec G, Fichefet T, Flavoni S, Barthélemy A, Benshila R, Chanut J, Levy C, Masson S, Vivier F. 2015. The Louvain-La-Neuve sea ice model LIM3.6: global and regional capabilities. Geoscientific Model Development 8:2991–3005.

    Google Scholar 

  • Sakshaug E. 2004. Primary and Secondary Production in the Arctic Seas. Stein R and MacDonald RW, editors. The Organic Carbon Cycle in the Arctic Ocean. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18912-8_3.

  • Schourup-Kristensen V, Wekerle C, Wolf-Gladrow DA, Völker C. 2018. Arctic Ocean biogeochemistry in the high resolution FESOM 1.4-REcoM2 model. Progress in Oceanography 168:65–81.

    Google Scholar 

  • Shirasawa K, Eicken H, Tateyama K, Takatsuka T, Kawamura T. 2009. Sea-ice-thickness variability in the Chukchi Sea, spring and summer 2002-2004. Deep Sea Research Part II: Topical Studies in Oceanography 56(17):1182–200.

    Google Scholar 

  • Springer AM, Mcroy CP, Flint MV. 1996. The Bering Sea Green Belt: shelf-edge processes and ecosystem production. Fisheries Oceanography 5(3–4):205–23.

    Google Scholar 

  • Stroeve JC, Serreze MC, Holland MM, Kay JE, Malanik J, Barrett AP. 2012. The Arctic’s rapidly shrinking sea ice cover: a research synthesis. Climatic Change 110:1005–27.

    Google Scholar 

  • Taylor KE. 2001. Summarizing multiple aspects of model performance in a single diagram[J]. Journal of Geophysical Research: Atmospheres 106(D7):7183–92.

    Google Scholar 

  • Tremblay J, Anderson LG, Matrai P, Coupel P, Bélanger S, Michel C, Reigstad M. 2015. Global and regional drivers of nutrient supply, primary production and CO2 drawdown in the changing Arctic Ocean. Progress in Oceanography 139:171–96.

    Google Scholar 

  • Uttal T, Curry JA, Mcphee MG, Perovich DK, Moritz RE, Maslanik JA, Guest PS, Stern HL, Moore JA, Turenne R, Heiberg A, Serreze MC, Wylie DP, Persson OG, Paulson CA, Halle C, Morison JH, Wheeler PA, Makshtas A, Welch H, Shupe MD, Intrieri JM, Stamnes K, Lindsey RW, Pinkel R, Pegau WS, Stanton TP, Grenfeld TC. 2002. Surface heat budget of the Arctic Ocean. Bulletin of the American Meteorological Society 83(2):255–75.

    Google Scholar 

  • Vancoppenolle M, Fichefet T, Goosse H, Bouillon S, Madec G, Maqueda MAM. 2009. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Modelling 27:33–53.

    Google Scholar 

  • Varela DE, Crawford DW, Wrohan IA, Wyatt SN, Carmack EC. 2013. Pelagic primary productivity and upper ocean nutrient dynamics across Subarctic and Arctic Seas. Journal of Geophysical Research: Oceans 118:7132–52.

    CAS  Google Scholar 

  • Walsh JJ, Dieterle DA, Maslowski W, Grebmeier JM, Whitledge TE, Flint M, Sukhanova IN, Bates N, Cota GF, Stockwell D, Moran SB, Hansell DA, McRoy CP. 2005. A numerical model of seasonal primary production within the Chukchi/Beaufort Seas. Deep Sea Research Part II: Topical Studies in Oceanography 52:3541–76.

    Google Scholar 

  • Wang J, Cota GF, Comiso JC. 2005. Phytoplankton in the Beaufort and Chukchi Seas: distribution, dynamics, and environmental forcing. Deep Sea Research Part II: Topical Studies in Oceanography 52:3355–68.

    Google Scholar 

  • Wang Y, Luo X, Zhang Y, Qin Y, Zhao W, Zheng Z, Nie H, Wei H. 2019. Heat budget analysis during the ice-melting season in the Chukchi Sea based on a model simulation. Chinese Science Bulletin 64:3485–97.

    Google Scholar 

  • Wei H, Zhao W, Luo X, Nie H, Hu X, Lu Y. 2019. Simulation of spatial distribution and seasonal variation of plankton in the Arctic Ocean. Haiyang Xuebao 41:65–79.

    Google Scholar 

  • Weingartner T, Aagaard K, Woodgate R, Danielson S, Sasaki Y, Cavalieri D. 2005. Circulation on the north central Chukchi Sea shelf. Deep Sea Research Part II: Topical Studies in Oceanography 52(24–26):3150–74.

    Google Scholar 

  • Weingartner T, Fang Y, Winsor P, Dobbins E, Potter R, Statscewich H, Mudge T, Irving B, Sousa L, Borg K. 2017. The summer hydrographic structure of the Hanna Shoal region on the northeastern Chukchi Sea shelf: 2011–2013. Deep Sea Research Part II: Topical Studies in Oceanography 144:6–20.

    Google Scholar 

  • Woodgate RA. 2018. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Progress in Oceanography 160:124–54.

    Google Scholar 

  • Yang Y, Bai X. 2020. Summer changes in water mass characteristics and vertical thermohaline structure in the Eastern Chukchi Sea, 1974–2017. Water 12(5):1434.

    Google Scholar 

  • Yun MS, Whitledge TE, Kong M, Lee SH. 2014. Low primary production in the Chukchi Sea shelf, 2009. Continental Shelf Research 76:1–11.

    Google Scholar 

  • Yun MS, Whitledge TE, Stockwell D, Son SH, Lee JH, Park JW, Lee DB, Park J, Lee SH. 2016. Primary production in the Chukchi Sea with potential effects of freshwater content. Biogeosciences 13:737–49.

    CAS  Google Scholar 

  • Zhang J, Ashjian C, Campbell R, Spitz YH, Steele M, Hill V. 2015. The influence of sea ice and snow cover and nutrient availability on the formation of massive under-ice phytoplankton blooms in the Chukchi Sea. Deep Sea Research Part II: Topical Studies in Oceanography 118:122–35.

    CAS  Google Scholar 

  • Zhang Y, Wei H, Lu Y, Luo X, Hu X, Zhao W. 2020. Dependence of Beaufort Sea low ice condition in the summer of 1998 on ice export in the prior-winter. Journal of Climate . https://doi.org/10.1175/JCLI-D-19-0943.1 (in press).

    Article  Google Scholar 

Download references

Acknowledgements

This work is funded by the National Natural Science Foundation of China (41630969, 41941013 and 41806225). The authors thank the NEMO team for providing the state-of-the-art models and the expert advices from colleagues within the CONCEPTS network of Canada and the Mercator-Ocean International. The authors thank Chinese National Arctic & Antarctic Data Center (http://www.chinare.org.cn/en/index/) and the OC-CCI team (https://esa-oceancolour-cci.org/) for providing the data used in this paper. The authors thank two anonymous reviewers for constructive comments on the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofan Luo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Z., Wei, H., Luo, X. et al. Mechanisms of Persistent High Primary Production During the Growing Season in the Chukchi Sea. Ecosystems 24, 891–910 (2021). https://doi.org/10.1007/s10021-020-00559-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-020-00559-8

Keywords

Navigation