Skip to main content
Log in

A Study of Atmospheric Radiation Flashes in the Near-Ultraviolet Region Using the TUS Detector aboard the Lomonosov Satellite

  • Published:
Cosmic Research Aims and scope Submit manuscript

Abstract

Tracking Ultraviolet Setup (TUS) detector is a detector of ultraviolet (UV) radiation of the atmosphere in the wavelength range of 300–400 nm (near-ultraviolet) with high sensitivity (tens of photons emitted within the solid angle of 10–4 sr in 0.8 μs), which operated for a year and a half aboard the Lomonosov satellite. The TUS telescope had a multipurpose operational program, which made it possible to detect UV flashes from the shortest ones created by extensive air showers generated by cosmic rays to long ones, up to 1 s, created by meteors. Among these various phenomena, most often are flashes from lightning strikes, both directly creating a glow and causing the development of secondary discharges in the atmosphere, in the upper atmosphere and in the ionosphere. These discharges differ in both nature and phenomenology—in particular, they have different durations and luminosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. Greisen, K., End to cosmic ray spectrum?, Phys. Rev. Lett., 1966, vol. 16, pp. 748–750.

    Article  ADS  Google Scholar 

  2. Zatsepin, G.T. and Kuz’min, V.A., Upper limit of the spectrum of cosmic rays, JETP Lett., 1966, vol. 4, pp. 78–80.

    ADS  Google Scholar 

  3. Khrenov, B.A., Alexandrov, V.V., Bugrov, D.I., et al., KLYPVE/TUS space experiments for study of ultrahigh-energy cosmic rays, Phys. At. Nucl., 2004, vol. 67, no. 11, pp. 2058–2061.

    Article  Google Scholar 

  4. Abrashkin, V., Alexandrov, V., Arakcheev, Y., et al., The TUS space fluorescence detector for study of UHECR and other phenomena of variable fluorescence light in the atmosphere, Adv. Space Res., 2006, vol. 37, no. 10, pp. 1876–1883.

    Article  ADS  Google Scholar 

  5. Adams, J.H., Ahmad, S., Albert, J.N., et al., Space experiment TUS on board the Lomonosov satellite as pathfinder of JEM-EUSO, Exp. Astron., 2015, vol. 40, pp. 315–326.

    Article  ADS  Google Scholar 

  6. Klimov, P.A., Panasyuk, M.I., Khrenov, B.A., et al., The TUS detector of extreme energy cosmic rays on board the Lomonosov satellite, Space Sci. Rev., 2017, vol. 212, pp. 1687–1703.

    Article  ADS  Google Scholar 

  7. Grinyuk, A., Grebenyuk, V., Khrenov, B., et al., The orbital TUS detector simulation, Astropart. Phys., 2017, vol. 90, pp. 93–97.

    Article  ADS  Google Scholar 

  8. Klimov, P.A., Ultra-high energy cosmic ray detector TUS: Preliminary results of the first year of measurements, in Lomonosov–UHECR/TLE collaboration: Proceedings of the 35th International Cosmic Ray Conference, 2017, vol. 301, p. 1098.

  9. Khrenov, B.A., Klimov, P.A., Panasyuk, M.I., et al., First results from the TUS orbital detector in the extensive air shower mode, J. Cosmol. Astropart. Phys., 2017, vol. 2017, no. 9, id 006.

  10. Zotov, M.Yu., Early results from TUS, the first orbital detector of extreme energy cosmic rays, in Lomonosov–UHECR/TLE Collaboration: Proceedings of the International Conference UHECR2016, JPS Conf. Proc., vol. 19, p. 011029.

  11. Garipov, G.K., Zotov, M.Yu., Klimov, P.A., et al., The KLYPVE ultra high energy cosmic ray detector onboard the ISS, Bull. Rus. Acad. Sci.: Phys., 2015, vol. 79, pp. 326–328.

    Google Scholar 

  12. Casolino, M., Klimov, P., and Piotrowski, L., Observation of ultra high energy cosmic rays from space: Status and perspectives, Prog. Theor. Exp. Phys., 2017, vol. 2017, no. 12, p. A107.

    Article  Google Scholar 

  13. Chen, A.B., Kuo, C.L., Lee, Y.J., et al., Global distributions and occurrence rates of transient luminous events, J. Geophys. Res.: Space Phys., 2008, vol. 113, A08306.

    ADS  Google Scholar 

  14. Sadovnichy, V.A., Panasyuk, M.I., Bobrovnikov, S.Yu., et al., First results of investigating the space environment onboard the Universitetskii-Tatyana satellite, Cosmic Res., 2007, vol. 45, no. 4, pp. 273–286.

    Article  ADS  Google Scholar 

  15. Sadovnichy, V.A., Panasyuk, M.I., Yashin, I.V., et al., Investigations of the space environment aboard the Universitetsky-Tat’yana and Universitetsky-Tat’yana-2 microsatellites, Sol. Syst. Res., 2011, vol. 45, no. 1, pp. 3–29.

    Article  ADS  Google Scholar 

  16. Garipov, G.K., Khrenov, B.A., Klimov, P.A., et al., Global transients in ultraviolet and red-infrared ranges from data of Universitetsky-Tatiana-2 satellite, J. Geophys. Res.: Atmos., 2013, vol. 118, pp. 370–379.

    ADS  Google Scholar 

  17. Panasyuk, M.I., Svertilov, S.I., Bogomolov, V.V., et al., Experiment on the Vernov satellite: Transient energetic processes in the Earth’s atmosphere and magnetosphere. Part II. First results, Cosmic Res., 2016, vol. 54, no. 5, pp. 343–350.

    Article  ADS  Google Scholar 

  18. Klimov, P.A., Garipov, G.K., Khrenov, B.A., et al., Vernov satellite data of transient atmospheric events, J. Appl. Meteorol. Climatol., 2017, vol. 56, pp. 2189–2201.

    Article  ADS  Google Scholar 

  19. Garipov, G.K., Khrenov, B.A., Panasyuk, M.I., et al., UV radiation from the atmosphere: Results of the MSU Tatiana satellite measurements, Astropart. Phys., 2005, vol. 24, no. 4–5, pp. 400–408.

    Article  ADS  Google Scholar 

  20. Vedenkin, N.N., Garipov, G.K., Klimov, P.A., et al., Atmospheric ultraviolet and red-infrared flashes from Universitetsky-Tatiana-2 satellite data, J. Exp. Theor. Phys., 2011, vol. 113, no. 5, pp. 781–790.

    Article  ADS  Google Scholar 

  21. Garipov, G.K., Alexandrov, V.V., Bugrov, D.I., et al., Electronics for the KLYPVE detector, AIP Conf. Ser., 2001, vol. 566, pp. 76–90.

  22. Garipov, G.K., Kaznacheeva, M.A., Khrenov, B.A., et al., An EAS-like event registered with the TUS orbital detector, Proc. Sci., 2019, vol. 358, id 193.

  23. Khrenov, B.A., Garipov, G.K., Kaznacheeva, M.A., et al., An extensive-air-shower-like event registered with the TUS orbital detector, J. Cosmol. Astropart. Phys., 2020, vol. 2020, no. 3, id 033.

  24. Klimov, P.A., Zotov, M.Y., Chirskaya, N.P., et al., Preliminary results from the TUS ultra-high energy cosmic ray orbital telescope: Registration of low-energy particles passing through the photodetector, Bull. Russ. Acad. Sci.: Phys, 2017, vol. 81, pp. 407–409.

    Article  Google Scholar 

  25. Said, R., Inan, U., and Cummins, K., Long-range lightning geolocation using a VLF radio atmospheric waveform bank, J. Geophys. Res.: Atmos., 2010, vol. 115, D23108.

    Article  ADS  Google Scholar 

  26. Kuo, C.L., Chen, A.B., Chou, J.K., et al., Radiative emission and energy deposition in transient luminous events, J. Phys. D: Appl. Phys., 2008, vol. 41, no. 23, id 234014.

  27. Barrington-Leigh, C.P. and Inan, U.S., Elves triggered by positive and negative lightning discharges, Geophys. Res. Lett., 1999, vol. 26, pp. 683–686.

    Article  ADS  Google Scholar 

  28. Newsome, R.T. and Inan, U.S., Free-running ground-based photometric array imaging of transient luminous events, J. Geophys. Res.: Space Phys., 2010, vol. 115, A00E41.

    Article  ADS  Google Scholar 

  29. Marshall, R.A., Silva, C.L., and Pasko, V.P., Elve doublets and compact intracloud discharges, Geophys. Res. Lett., 2015, vol. 42, pp. 6112–6119.

    Article  ADS  Google Scholar 

  30. Kaznacheeva, M.A., Klimov, P.A., and Khrenov, B.A., Transient UV background when registering EASes with the TUS orbital detector, Bull. Russ. Acad. Sci.: Phys., 2019, vol. 83, pp. 1024–1027.

    Article  Google Scholar 

  31. Khrenov, B.A. and Stulov, V.P., Detection of meteors and sub-relativistic dust grains by the fluorescence detectors of ultra high energy cosmic rays, Adv. Space Res., 2006, vol. 37, no. 10, pp. 1868–1875.

    Article  ADS  Google Scholar 

  32. Panasyuk, M.I., Picozza, P., Casolino, M., et al., Ultra high energy cosmic ray detector KLYPVE onboard the Russian segment of the ISS, Proc. Sci., 2016, vol. 236, id 669.

  33. Klimov, P.A. and Casolino, M., The JEM-EUSO collaboration. Status of the KLYPVE-EUSO detector for EECR study onboard the ISS, Proc. Sci., 2017, vol. 301, id 412.

Download references

Funding

This study was supported by the Ministry of Education and Science of the Russian Federation, project no. RFMEFI60419X0237.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Klimov.

Additional information

Translated by N. Topchiev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khrenov, B.A., Garipov, G.K., Zotov, M.Y. et al. A Study of Atmospheric Radiation Flashes in the Near-Ultraviolet Region Using the TUS Detector aboard the Lomonosov Satellite. Cosmic Res 58, 317–329 (2020). https://doi.org/10.1134/S0010952520050056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010952520050056

Navigation