Skip to main content
Log in

Set-Theoretic Solutions of the Pentagon Equation

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

A set-theoretic solution of the Pentagon Equation on a non-empty set S is a map \(s:S^2\rightarrow S^2\) such that \(s_{23}s_{13}s_{12}=s_{12}s_{23}\), where \(s_{12}=s\times {{{\,\mathrm{id}\,}}}\), \(s_{23}={{{\,\mathrm{id}\,}}}\times s\) and \(s_{13}=(\tau \times {{{\,\mathrm{id}\,}}})({{{\,\mathrm{id}\,}}}\times s)(\tau \times {{{\,\mathrm{id}\,}}})\) are mappings from \(S^3\) to itself and \(\tau :S^2\rightarrow S^2\) is the flip map, i.e., \(\tau (x,y) =(y,x)\). We give a description of all involutive solutions, i.e., \(s^2={{\,\mathrm{id}\,}}\). It is shown that such solutions are determined by a factorization of S as direct product \(X\times A \times G\) and a map \(\sigma :A\rightarrow {{\,\mathrm{Sym}\,}}(X)\), where X is a non-empty set and AG are elementary abelian 2-groups. Isomorphic solutions are determined by the cardinalities of A, G and X, i.e., the map \(\sigma \) is irrelevant. In particular, if S is finite of cardinality \(2^n(2m+1)\) for some \(n,m\geqslant 0\) then, on S, there are precisely \(\left( {\begin{array}{c}n+2\\ 2\end{array}}\right) \) non-isomorphic solutions of the Pentagon Equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ananin, A.Z.: An intriguing story about representable algebras. In: Ring Theory 1989 (Ramat Gan and Jerusalem, 1988/1989), Israel Mathemaics Conference Proceedings, vol. 1, pp. 31–38. Weizmann, Jerusalem (1989)

  2. Baaj, S., Skandalis, G.: Unitaires multiplicatifs et dualité pour les produits croisés de \(C^*\)-algèbres. Ann. Sci. École Norm. Sup. (4) 26(4), 425–488 (1993)

    MathSciNet  MATH  Google Scholar 

  3. Baaj, S., Skandalis, G.: Unitaires multiplicatifs commutatifs. C. R. Math. Acad. Sci. Paris 336(4), 299–304 (2003)

    MathSciNet  MATH  Google Scholar 

  4. Bachiller, D.: Solutions of the Yang–Baxter equation associated to skew left braces, with applications to racks. J. Knot Theory Ramif. 27(8), 1850055 (2018)

    MathSciNet  MATH  Google Scholar 

  5. Bachiller, D., Cedó, F., Jespers, E.: Solutions of the Yang–Baxter equation associated with a left brace. J. Algebra 463, 80–102 (2016)

    MathSciNet  MATH  Google Scholar 

  6. Baxter, R.J.: Eight-vertex model in lattice statistics. Phys. Rev. Lett. 26, 832–833 (1971)

    ADS  Google Scholar 

  7. Catino, F., Mazzotta, M., Miccoli, M.M.: Set-theoretical solutions of the pentagon equation on groups. Commun. Algebra 48(1), 83–92 (2020)

    MathSciNet  MATH  Google Scholar 

  8. Catino, F., Mazzotta, M., Stefanelli, P.: Set-theoretical solutions of the Yang–Baxter and pentagon equations on semigroups. Semigroup Forum (2020). https://doi.org/10.1007/s00233-020-10100-x

    Article  MathSciNet  MATH  Google Scholar 

  9. Cedó, F., Jespers, E., Okniński, J.: Retractability of set theoretic solutions of the Yang–Baxter equation. Adv. Math. 224(6), 2472–2484 (2010)

    MathSciNet  MATH  Google Scholar 

  10. Cedó, F., Jespers, E., Okniński, J.: Braces and the Yang–Baxter equation. Commun. Math. Phys. 327(1), 101–116 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Cedó, F., Okniński, J.: Gröbner bases for quadratic algebras of skew type. Proc. Edinb. Math. Soc. (2) 55(2), 387–401 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Clifford, A.H., Preston, G.B.: The Algebraic Theory of semigroups. Mathematical Surveys Monographs, No. 7, vol. I. American Mathematical Society, Providence, RI (1961)

    MATH  Google Scholar 

  13. Dimakis, A., Müller-Hoissen, F.: Simplex and polygon equations. SIGMA Symmetry Integr. Geom. Methods Appl. 11, 49 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Drinfeld, V.G.: On some unsolved problems in quantum group theory. In: Quantum Groups (Leningrad, 1990), Lecture Notes in Mathematics, vol. 1510, pp. 1–8. Springer, Berlin (1992)

  15. Etingof, P., Schedler, T., Soloviev, A.: Set-theoretical solutions to the quantum Yang–Baxter equation. Duke Math. J. 100(2), 169–209 (1999)

    MathSciNet  MATH  Google Scholar 

  16. Gateva-Ivanova, T.: Quadratic algebras, Yang–Baxter equation, and Artin–Schelter regularity. Adv. Math. 230(4–6), 2152–2175 (2012)

    MathSciNet  MATH  Google Scholar 

  17. Gateva-Ivanova, T.: Set-theoretic solutions of the Yang–Baxter equation, braces and symmetric groups. Adv. Math. 338, 649–701 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Gateva-Ivanova, T., Van den Bergh, M.: Semigroups of \(I\)-type. J. Algebra 206(1), 97–112 (1998)

    Article  MathSciNet  Google Scholar 

  19. Guarnieri, L., Vendramin, L.: Skew braces and the Yang–Baxter equation. Math. Comput. 86(307), 2519–2534 (2017)

    Article  MathSciNet  Google Scholar 

  20. Jespers, E., Kubat, Ł., Van Antwerpen, A.: The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang–Baxter equation. Trans. Am. Math. Soc. 372(10), 7191–7223 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Jespers, E., Kubat, Ł., Van Antwerpen, A.: Corrigendum and addendum to "The structure monoid and algebra of a non-degenerate set-theoretic solution of the Yang-Baxter equation". Trans. Am. Math. Soc. 373(6), 4517–4521 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Jespers, E., Okniński, J.: Noetherian Semigroup Algebras, Algebraic Applications, vol. 7. Springer, Dordrecht (2007)

    MATH  Google Scholar 

  23. Jiang, L., Liu, M.: On set-theoretical solution of the pentagon equation. Adv. Math. (China) 34(3), 331–337 (2005)

    ADS  MathSciNet  Google Scholar 

  24. Kashaev, R.M.: The Heisenberg double and the pentagon relation. Algebra i Analiz 8(4), 63–74 (1996)

    MathSciNet  MATH  Google Scholar 

  25. Kashaev, R.M.: Fully noncommutative discrete Liouville equation. In: Infinite Analysis 2010. Developments in quantum integrable systems, RIMS Kôkyûroku Bessatsu, B28, pp. 89–98. Research Institute for Mathematical Sciences (RIMS), Kyoto (2011)

  26. Kashaev, R.M., Reshetikhin, N.Y.: Symmetrically factorizable groups and self-theoretical solutions of the pentagon equation. In: Quantum Groups, Contemporary Mathematics, vol. 433, pp. 267–279. American Mathematical Society, Providence, RI (2007)

  27. Kashaev, R.M., Sergeev, S.M.: On pentagon, ten-term, and tetrahedron relations. Commun. Math. Phys. 195(2), 309–319 (1998)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Kassel, C.: Quantum Groups. Graduate Texts in Mathematics, vol. 155. Springer, New York (1995)

    MATH  Google Scholar 

  29. Lu, J.-H., Yan, M., Zhu, Y.-C.: On the set-theoretical Yang–Baxter equation. Duke Math. J. 104(1), 1–18 (2000)

    MathSciNet  MATH  Google Scholar 

  30. Maillet, J.M.: On pentagon and tetrahedron equations. Algebra i Analiz 6(2), 206–214 (1994)

    MathSciNet  MATH  Google Scholar 

  31. McConnell, J.C., Robson, J.C. (with the cooperation of Small, L.W.): Noncommutative Noetherian Rings, Graduate Studies in Mathematics, vol. 30, revised ed. American Mathematical Society, Providence, RI (2001)

  32. Militaru, G.: The Hopf modules category and the Hopf equation. Commun. Algebra 26(10), 3071–3097 (1998)

    MathSciNet  MATH  Google Scholar 

  33. Militaru, G.: Heisenberg double, pentagon equation, structure and classification of finite-dimensional Hopf algebras. J. Lond. Math. Soc. (2) 69(1), 44–64 (2004)

    MathSciNet  MATH  Google Scholar 

  34. Okniński, J.: Semigroup Algebras. Monographs Textbooks Pure Applied Mathematics, vol. 138. Marcel Dekker Inc, New York (1991)

    MATH  Google Scholar 

  35. Polishchuk, A., Positselski, L.: Quadratic Algebras. University Lecture Series, vol. 37. American Mathematical Society, Providence, RI (2005)

    MATH  Google Scholar 

  36. Rump, W.: A decomposition theorem for square-free unitary solutions of the quantum Yang–Baxter equation. Adv. Math. 193(1), 40–55 (2005)

    MathSciNet  MATH  Google Scholar 

  37. Street, R.: Fusion operators and cocycloids in monoidal categories. Appl. Categ. Struct. 6(2), 177–191 (1998)

    MathSciNet  MATH  Google Scholar 

  38. Yang, C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction. Phys. Rev. Lett. 19, 1312–1315 (1967)

    ADS  MathSciNet  MATH  Google Scholar 

  39. Zamolodchikov, A.B.: Tetrahedra equations and integrable systems in three-dimensional space. Sov. Phys. JETP 52(2), 325–336 (1980)

    ADS  MathSciNet  Google Scholar 

  40. Zamolodchikov, A.B.: Tetrahedron equations and the relativistic \(S\)-matrix of straight-strings in \(2+1\)-dimensions. Commun. Math. Phys. 79(4), 489–505 (1981)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Jespers.

Additional information

Communicated by C. Schweigert

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The third author is supported by Fonds voor Wetenschappelijk Onderzoek (Flanders), Grant G016117. The first and second authors are supported in part by Onderzoeksraad of Vrije Universiteit Brussel and Fonds voor Wetenschappelijk Onderzoek (Flanders), Grant G016117.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Colazzo, I., Jespers, E. & Kubat, Ł. Set-Theoretic Solutions of the Pentagon Equation. Commun. Math. Phys. 380, 1003–1024 (2020). https://doi.org/10.1007/s00220-020-03862-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-020-03862-6

Navigation