Skip to main content
Log in

Microstructure, morphology and strength of cotton yarns sized by collagen solution

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

For sizing cotton yarn before weaving, a new composition based on a biodegradable polymer—collagen, has been proposed. The detected changes in the FT-IR spectra of the yarn coated with a collagen solution indicate the obvious formation of new intermolecular hydrogen bonds between the primary and secondary amino groups of the collagen and the cellulose hydroxyl groups. The formation of such bonds contributed to the strengthening of the collagen film on the surface of cotton threads. SEM studies have shown a significant improvement in the microstructure of threads and the morphology of fibers compared with threads not sized and sized with starch. When sizing with a collagen solution, the diameter of the threads decreases by 14%, when sizing with a starch solution—by 18%. In cases of collagen sizing, along with bonding, compaction, a longitudinal orientation of the fibers is observed. The diameter of the cellulose fibers sized with collagen is in the range of 12–15 microns. Unlike starch, which fills the interfiber spaces and even penetrates into individual tubular fibers, collagen is evenly located only on the surface of the fibers. Improving the microstructure and morphology of cellulose fibers and threads when sizing with a collagen-based composition leads to a reduction in the consumption of sizing agent, an increase in the linear density of threads by 15–20%, an increase in breaking load by 25–35%, and a decrease in elongation at break by 15–20%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16:1017–1023

    CAS  Google Scholar 

  • Ali Hamdani ST (2017) Introduction to weaving. Struct Text Des Interlac Interloo 1:31–46

    Google Scholar 

  • Ang S, Narayanan JR, Kargupta W, Haritos V, Batchelor W (2020) Cellulose nanofiber diameter distributions from microscopy image analysis: effect of measurement statistics and operator. Cellulose 27:4189–4208

    CAS  Google Scholar 

  • Basak S, Wazed AS (2018) Fire resistant behavior of cellulosic textile functionalized with wastage plant bio-molecules: a comparative scientific report. Int J Biol Macromol 114(1):169–180

    CAS  PubMed  Google Scholar 

  • Basak S, Laha A, Bar M, Roy R (2018) Recent advances in protective textile materials. Adv Text Eng Mater 1:55–86

    Google Scholar 

  • Bismark S, Xun Z, Zhu Z, Charles F, William B, Benjamin A (2019) Phosphorylation and octenylsuccinylation of acid-thinned starch for enhancing adhesion on cotton/polyester blend fibers at varied temperature sizing. Starch-Starke 71(1–2):e1800055

    Google Scholar 

  • Cao N, Yang X, Fu Y (2009) Effects of various plasticizers on mechanical and water vapor barrier properties of gelatin films. Food Hydrocoll 23:729–735

    CAS  Google Scholar 

  • Chen L, Reddy N, Yang Y (2013) Remediation of environmental pollution by substituting poly(vinyl alcohol) with biodegradable warp size from wheat gluten. Environ Sci Technol 47:4505–4511

    CAS  PubMed  Google Scholar 

  • Djordjevic S, Kovacevic S, Nikolic L, Miljkovic M, Djordjevic D (2014) Cotton yarn sizing by acrylamide grafted starch copolymer. J Nat Fibers 11(3):212–224

    CAS  Google Scholar 

  • Djordjevic S, Kovacevic S, Djordjevic D, Konstantinovic S (2019) Sizing process of cotton yarn by size from a copolymer methacrylic acid and hydrolyzed potato starch. Text Res J 89(17):3457–3465

    CAS  Google Scholar 

  • Fettahov R, Cihangirova M, Yesil Y (2016) Determination of yarn length in warp beams for sizing. Tekst ve Konfeks 26:351–357

    Google Scholar 

  • Gao D, Zhao P, Lyu B et al (2020) Composite based on poly(acrylic acid)/modified attapulgite/zinc oxide as a flame retardant of cotton fabrics. Cellulose 27:2873–2886

    CAS  Google Scholar 

  • Haque MM, Majumder S (2018) Study on material wastes in air-jet weaving mills. Text Appar Technol Manag 10(3):1–16

    Google Scholar 

  • Hu J, Babu KM (2007) Weaving preparation: warping, sizing, drawing-in and tying. Text Asia 38–39:27–33

    Google Scholar 

  • Jiang B, Zhou Y, Yang Z, Wu Z, Huang G, Lin L, Zhang X (2005) Radiation curing of collagen/divinyl ether enhanced by pyridinium salts. J Appl Polym Sci 98(5):2094–2100

    CAS  Google Scholar 

  • Jiang Q, Chen S, Deng X, Feng Y, Reddy N, Zhu Q, Liu W, Qiu Y (2019) A sustainable low temperature yarn reinforcing process to reduce water and energy consumptions and pollution in the textile industry. Clean Prod 210:646–652

    CAS  Google Scholar 

  • Karimov SK, Rafikov AS, Ibragimov AT, Askarov MA (2015) A reinforced film of graft copolymers of collagen and acrylates. Int Polym Sci Technol 42(4):47–49

    Google Scholar 

  • Li M, Zhu Z, Pan X (2011) Effects of starch acryloylation on the grafting efficiency, adhesion, and film properties of acryloylated starch-g-poly(acrylic acid) for warp sizing. Text Res J 63(11):683–691

    CAS  Google Scholar 

  • Liu Y, Wang QQ, Jiang ZM, Zhang CJ, Li ZF, Chen HQ, Zhu P (2018) Effect of chitosan on the fire retardancy and thermal degradation properties of coated cotton fabrics with sodium phytate and APTES by LBL assembly. J Anal Appl Pyrol 135:289–298

    CAS  Google Scholar 

  • Ma Y, Teng A, Zhao K, Zhang K, Zhao H, Duan S, Li S, Guo Y, Wang W (2020) A top-down approach to improve collagen film’s performance: the comparisons of macro, micro and nano sized fibers. Food Chem 309(30):125624–125636

    CAS  PubMed  Google Scholar 

  • Moncy JV, Vinoy Th, Derrick DR, Elijah N (2009) Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as of pone tissue scaffolds. Polymer 50(15):3778–3785

    Google Scholar 

  • Nabiev N, Md. Raju A, Rafikov A, Quan H (2017) Extraction of collagen from cattle skin and synthesis of collagen based flame retardant composition and introduction into cellulosic textile material by graft colypolimerization. Asian J Chem 29(11):2470–2475

    Google Scholar 

  • Nikolic V, Velickovic S, Popovic A (2012) Amine activators influence on grafting reaction between methacrylic acid and starch. Carbohydr Polym 88(4):1407–1413

    CAS  Google Scholar 

  • Ortelli S, Malucelli G, Cuttica F, Blosi M, Zanoni I, Costa AL (2018) Coatings made of proteins adsorbed on TiO2 nanoparticles: a new flame retardant approach for cotton fabrics. Cellul 25:2755–2765

    CAS  Google Scholar 

  • Poon CK, Kan CW (2015) Effects of TiO2 and curing temperatures on flame retardant finishing of cotton. Carbohydr Polym 121:457–467

    CAS  PubMed  Google Scholar 

  • Rabinovich D (2008) Regulation of collagen chemical activity: revision of the Hoffmeister effect. World Leater 3:26–29

    Google Scholar 

  • Rafikov AS, Nabiev ND, Karimov SK, Ibodulloev BSh, Mirzaev NB (2019) Getting graft cellulose copolymers and acrylic monomers. Int J Recent Technol Eng 8(4):719–723

    Google Scholar 

  • Reddy N, Zhang Y, Yang Y (2013) Corn distillers dried grains as sustainable and environmentally friendly warp sizing agents. ACS Sustain Chem Eng 1:1564–1571

    CAS  Google Scholar 

  • Salim NV, Jin X, Mateti S, Lin H, Glattauer V, Fox B, Ramshaw JAM (2019) Porous carbon fibers made from collagen derived from an animal by-product. Mater Today Adv 1:31–38

    Google Scholar 

  • Song J, Zhang P, Cheng L, Liao Y, Xu B, Bao R, Wang W, Liu W (2015) Nano-silver in situ hybridized collagen scaffolds for regeneration of infected full-thickness burn skin. J Mater Chem B 3(20):4231–4241

    CAS  PubMed  Google Scholar 

  • Stegmaier T, Wunderlich W, Hager T, Planck H (2008) Flame-retardant coating of single threads in sizing process. Melliand Textilberichte 89: 135–137 + 446–449

  • Tang K, Wang F, Iia P, Liu J, Wang K (2007) Thermal degradation kinetics of sweat soaked cattle hide collagen fibers. J Am Leather Chem Assoc 102(2):52–61

    CAS  Google Scholar 

  • Tikhonova YuV, Krivonosova LG, Lomakin SP, Filatova ES, Khabibullin RR (2009) The characteristics of collagen hydrolysis products. Bashkir Chem J 16(1):13–15

    CAS  Google Scholar 

  • Vedhanayagam M, Nidhin M, Duraipandy N, Naresh ND, Jaganathan G, Ranganathan M, Kiran MS, Narayan S, Nair BU, Sreeram KJ (2017) Role of nanoparticle size in self-assemble processes of collagen for tissue engineering application. Int J Biol Macromol 99:655–664

    CAS  PubMed  Google Scholar 

  • Wang X, Chen K, Li W, Hao D, Guo P (2019) A paper sizing agent based on leather collagen hydrolysates modified by glycol diglycidyl ether and its compound performance. Int J Biol Macromol 124:1205–1212

    CAS  PubMed  Google Scholar 

  • Wang L, Zhang X, Xu J, Wang Q, Fan X (2020) How starch-g-poly(acrylamide) molecular structure effect sizing properties. Int J Biol Macromol 144(1):403–409

    CAS  PubMed  Google Scholar 

  • Wu J, Liu F, Yu Z, Ma Y, Goff HD, Ma J, Zhong F (2020) Facile preparation of collagen fiber-glycerol-carboxymethyl cellulose composite film by immersing method. Carbohydr Polym 229:115429–115434

    CAS  PubMed  Google Scholar 

  • Xiao Y, Liu Y, Wang Y, Jin Y, Guo X, Liu Y, Qi X, Lei H, Xu H (2020) Heat-induced whey protein isolate gels improved by cellulose nanocrystals: gelling properties and microstructure. Carbohydr Polym 231(1):115749–115757

    CAS  PubMed  Google Scholar 

  • Xie KL, Gao AQ, Zhang YS (2013) Flame retardant finishing of cotton fabric based on synergistic compounds containing boron and nitrogen. Carbohydr Polym 98(1):706–710

    CAS  PubMed  Google Scholar 

  • Yang Y, Reddy N (2013) Potential of using plant proteins and chicken feathers for cotton warp sizing. Cellulose 20:2163–2174

    CAS  Google Scholar 

  • Yang RL, Zhou YD, Xu ZL (2015) Research on thermal comfort in cotton textile workshop. Text Res J 36(3):54–57

    Google Scholar 

  • Zhang F, Lu Y, Wan C (2020) A bio-resourced mannitol phospholipid ammonium reactive flame retardant for cotton with efficient antiflaming and durability. Cellulose 27:4803–4815

    CAS  Google Scholar 

  • Zhao Y, Xu H, Zhao Y, Xu L, Yang Y (2015) Soyprotein-Based biochemicals to replace PVA for high-speed weawing. Fiber society 2015 fall meeting and technical conference—fibers: where tradition meets innovation. College of Textiles, North Carolina State University Raleigh; US

  • Zhao Y, Zhao Y, Xu H, Yang Y (2015b) A sustainable slashing industry using biodegradable sizes from modified soy protein to replace petro-based poly(vinyl alcohol). Environ Sci Technol 49:2391–2397

    CAS  PubMed  Google Scholar 

  • Zhao Y, Zhao Y, Yang Y (2015c) Modified soy protein to substitute non-degradable petrochemicals for slashing industry. Ind Crops Prod 67:466–474

    CAS  Google Scholar 

  • Zhao Y, Xu H, Mu B, Xu L, Hogan R, Yang Y (2016) Functions of soymeal compositions in textile sizing. Ind Crops Prod 89:455–464

    CAS  Google Scholar 

  • Zhao Y, Xu H, Yang Y (2017) Development of biodegradable textile sizes from soymeal: a renewable and cost-effective resource. Polym Environ 25:349–358

    CAS  Google Scholar 

  • Zhu Z, Wang M (2014) Effects of starch maleation and sulfosuccination on the adhesion of starch to cotton and polyester fibers. Adhes Sci Technol 28(10):935–949

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Innovative Development of the Republic of Uzbekistan [Grant Number OT-F-7-16, 2017-2020].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adham Salimovich Rafikov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rafikov, A.S., Khakimova, M.S., Fayzullayeva, D.A. et al. Microstructure, morphology and strength of cotton yarns sized by collagen solution. Cellulose 27, 10369–10384 (2020). https://doi.org/10.1007/s10570-020-03450-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03450-w

Keywords

Navigation