Skip to main content
Log in

Drying-induced bending deformation of cellulose nanocrystals studied by molecular dynamics simulations

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Drying cellulosic materials from their water-swollen state can collapse their ultrastructure and alter their macroscopic material properties such as mechanical strength and water-retention ability. However, at the single-crystal or molecular level, little is known about the deformation of cellulose upon drying. We thus investigate herein the drying-induced deformation of a cellulose crystal by using an atomistic molecular dynamics simulation that considers a hydrated system composed of two short cellulose crystals, a lower one fixed to a flat substrate and an upper one free to deform. To mimic vacuum drying, the water is gradually removed from the system. As the drying proceeds, the upper cellulose crystal bends and forms a tight contact with the lower cellulose crystal. This result underlines the importance of lateral deformation of cellulose crystals in the collapse of the cellulose ultrastructure and provides insights into the molecular mechanisms responsible for modifying the properties of cellulose materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abraham MJ, Murtola T, Shulz R, Páll S, Smith JC, Hess B, Lindahl E (2015) GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2:19–25

    Article  Google Scholar 

  • Beaumont M, König J, Opietnik M, Potthast A, Rosenau T (2017) Drying of a cellulose II gel: effect of physical modification and redispersibility in water. Cellulose 24:1199–1209

    Article  CAS  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, Hermans J (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular forces. Springer, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  • Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984) Molecular dynamics with coupling to an external bath. J Chem Phys 81:3684–3690

    Article  CAS  Google Scholar 

  • Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126:014101/1–014101/7

    Article  CAS  Google Scholar 

  • Chen P, Nishiyama Y, Mazeau K (2014) Atomic partial charges and one Lennard-Jones parameter crucial to model cellulose allomorphs. Cellulose 21:2207–2217

    Article  CAS  Google Scholar 

  • Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2016) Linear, non-linear and plastic bending deformation of cellulose nanocrystals. Phys Chem Chem Phys 18:19880–19887

    Article  CAS  Google Scholar 

  • Chen P, Ogawa Y, Nishiyama Y, Ismail AE, Mazeau K (2018) Iα to Iβ mechano-conversion and amorphization in native cellulose simulated by crystal bending. Cellulose 25:4345–4355

    Article  CAS  Google Scholar 

  • Chen P, Terrenzi C, Furó I, Berglund LA, Wohlert J (2019) Quantifying localized macromolecular dynamics within hydrated cellulose fibril aggregates. Macromolecules 52:7278–7288

    Article  CAS  Google Scholar 

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Giacomozzi DE, Joutsimo O (2017) Drying temperature and hornification of industrial never-dried Pinus radiata Pulps. 2. Voith Sulzer Refining. BioResources 12:1532–1547

    Article  CAS  Google Scholar 

  • Häggkvist M, Li TQ, Ödberg L (1998) Effects of drying and pressing on the pore structure in the cellulose fibre wall studied by 1H and 2H NMR relaxation. Cellulose 5:33–49

    Article  Google Scholar 

  • Hansen HS, Huenenberger PH (2011) A re-optimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers, and glycosidic linkage conformers. J Comput Chem 32:998–1032

    Article  CAS  Google Scholar 

  • Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12:1448–1453

    Article  CAS  Google Scholar 

  • Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18:1463–1472

    Article  CAS  Google Scholar 

  • Hoepfner S, Ratka L, Milow B (2008) Synthesis and characterization of nanofibrillar cellulose aerogels. Cellulose 15:121–129

    Article  CAS  Google Scholar 

  • Hult EL, Larsson PT, Iversen T (2001) Cellulose fibril aggregation—an inherent property of kraft pulps. Polymer 42:3309–3314

    Article  CAS  Google Scholar 

  • Jin H, Nishiyama Y, Wada M, Kuga S (2004) Nanofibrillar cellulose aerogels. Colloids Surf A 240:63–67

    Article  CAS  Google Scholar 

  • Lovikka VA, Khanjani P, Väisänen S, Vuorinen T, Maloney TC (2016) Porosity of wood pulp fibers in the wet and highly open dry state. Microporous Mesoporous Mater 234:326–335

    Article  CAS  Google Scholar 

  • Mattos BD, Tardy BL, Rojas OJ (2019) Accounting for substrate interactions in the measurement of the dimensions of cellulose nanofibrils. Biomacromolecules 20:2657–2665

    Article  CAS  Google Scholar 

  • Minor JL (1994) Hornification—its origin and meaning. Prog Pap Recycl 3:93–95

    Google Scholar 

  • Molnár G, Rodney D, Martoïa F, Dumont PJJ, Nishiyama Y, Mazeau K, Orgéas L (2018) Cellulose crystals plastify by localized shear. Proc Natl Acad Sci USA 115:7260–7265

    Article  Google Scholar 

  • Newman RH (2004) Carbon-13 NMR evidence for cocrystallization of cellulose as a mechanism for hornification of bleached kraft pulp. Cellulose 11:45–52

    Article  CAS  Google Scholar 

  • Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082

    Article  CAS  Google Scholar 

  • Ogawa Y (2019) Electron microdiffraction reveals the nanoscale twist geometry of cellulose nanocrystals. Nanoscale 11:21767–21774

    Article  CAS  Google Scholar 

  • Oksanen T, Buchert J, Viikari L (1997) The role of hemicelluloses in the hornification of bleached kraft pulps. Holzforschung 51:355–360

    Article  CAS  Google Scholar 

  • Paajanen A, Ceccherini S, Maloney T, Ketoja JA (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose 26:5877–5892

    Article  CAS  Google Scholar 

  • Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66:97–103

    Article  CAS  Google Scholar 

  • Peng Y, Gardner DJ, Han Y (2012) Dryomg cellulose nanofibrils: in search of a suitable method. Cellulose 19:91–102

    Article  CAS  Google Scholar 

  • PyMOL. The PyMOL molecular graphics system, Version 2.1.0 Schrödinger, LCC

  • Rämänen P, Penttilä P, Svedström K, Maunu SL, Serimaa R (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912

    Article  Google Scholar 

  • Smith KB, Tisserant J-N, Assenza S, Arcari M, Nyström G, Mezzenga R (2019) Confinement-induced ordering and self-folding of cellulose nanofibrils. Adv Sci 6:1801540. https://doi.org/10.1002/advs.201801540

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the computational resources of the Centre d’Expérimentaion et de Calcul Intensif (CECIC) at the Institut de Chimie Moléculaire de Grenoble (ICMG) of the University Grenoble Alpes.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu Ogawa or Yoshiharu Nishiyama.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, Y., Nishiyama, Y. & Mazeau, K. Drying-induced bending deformation of cellulose nanocrystals studied by molecular dynamics simulations. Cellulose 27, 9779–9786 (2020). https://doi.org/10.1007/s10570-020-03451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03451-9

Keywords

Navigation