Skip to main content
Log in

Diagenetic evolution and associated dolomitization events in the middle Jurassic Samana Suk Formation, Lesser Himalayan Hill Ranges, NW Pakistan

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

The Jurassic carbonates of the Samana Suk Formation are extensively exposed in the foreland areas of Himalayas and form major reservoir of the upper Indus basin. These carbonates are composed of oolitic, pelitic fossiliferous and micritic limestone units which have been extensively modified by diagenetic alterations, particularly dolomitization. Field observations show two distinct types of dolostone geobodies (i) bedding parallel stratiform, and (ii) patchy dolostone units respectively. Bedding parallel stratiform dolostones are present in the basal part of the formation, while patchy dolostones are present at the middle and upper parts of the Samana Suk Formation. The dolomitization intensity of both geobodies increases from NW to SE in the study area. Petrographic studies reveal six phases of dolomites and three phases of calcites based on texture, crystal size and morphology. These phases are: matrix replacive dolomites (MD-I to MD-III); cementing dolomites include, replacive cementing dolomite (RD), saddle cementing dolomite (SD) and late stage cementing dolomites (CD); and calcite phases include CC-I and CC-II. XRD analyses reveal that stratiform matrix dolomites (MD-I, MD-II) are stoichiometric (51.08–51.86 mol percent of CaCO3) and contain up to 95% of the mineral dolomite. The patchy dolomite cement is non-stoichiometric (33.39–55.08 mol% of CaCO3) and contains around 65% of the mineral dolomite, whereas saddle dolomites is also non-stoichiometric (51.57 to 53.50 mol% of CaCO3) in origin. Stable isotope studies reveal non-depleted δ18O and δ13C values of matrix dolomites (MD-I, MD-II) represents coeval sea-water signatures of Jurassic carbonates, hence may have been formed by evaporative process. Dolomite cements (RD, SD) shows depleted δ18O values which represent elevated temperature, related to hydrothermal fluid source for their formation. The fracture filling calcite (CC-II) exhibits less depleted values indicative of meteoric fluids affected by shallow to moderate burial. The dedolomites shows depleted δ13C values suggests their formation from the meteoric water.

Field, petrographic and geochemical studies suggest that diagenetic evolution of the Samana Suk Formation is the multistage process. In the first phase, marine diagenetic processes including marine cementation, stratiform dolomitization may have formed due to surface processes of marine water in peritidal to intertidal settings, while the second phase of diagenesis is due to burial associated processes which includes hydrothermal dolomitization occurred due to movement of magnesium rich fluids along weak planes such as fractures, faults, bedding planes and stylolites. Last stage includes formation of hydrothermal fracture filling calcites, replacive pyrites and dedolomites due to the uplift related processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ahsan N, Chaudhry MN (2008) Geology of Hettangian to Middle Eocene rocks of Hazara and Kashmir Basins, Northwest Lesser Himalayas, Pakistan. Geol Bull Punjab Univ 43:131–152

    Google Scholar 

  • Allan JR, Wiggins WD (1993) Dolomite Reservoirs. Geochemical techniques for evaluating origin and distribution, American Association of Petroleum Geologists Continuing Education Course Note Series 36. AAPG, Tulsa

  • Baniak GM, Amskold L, Konhauser KO, Muehlenbachs K, Pemberton SG, Gingras MK (2014) Sabkha and burrow-mediated dolomitization in the mississippian debolt Formation, northwestern alberta, canada. Ichnos Int J Plant Anim 21:158–174. https://doi.org/10.1080/10420940.2014.930036

    Article  Google Scholar 

  • Boggs S, Krinsley D (2006) Application of Cathodoluminescence Imaging to the Study of Sedimentary Rocks. Cambridge University Press, New York, pp 1–165

    Book  Google Scholar 

  • Cantrell D, Swart P, Hagerty R (2004) Genesis and characterization of dolomite, Arab-D reservoir, Ghawar field, Saudi Arabia. GeoArabia 9:11–36

    Google Scholar 

  • Chatterjee S, Goswami A, Scotese CR (2013) The longest voyage: tectonic, magmatic, and paleoclimatic evolution of the Indian plate during its northward flight from Gondwana to Asia. Gondwana Res 23:238–267. https://doi.org/10.1016/j.gr.2012.07.001

    Article  Google Scholar 

  • Chen D, Qing H, Yang C (2004) Multistage hydrothermal dolomites in the Middle Devonian (Givetian) carbonates from the Guilin area, South China. Sedimentology 51:1029–1051

    Article  Google Scholar 

  • Choquette PW, Hiatt EE (2008) Shallow-burial dolomite cement: a major component of many ancient sucrosic dolomites. Sedimentology 55:423–460

    Article  Google Scholar 

  • Craig J, Hakhoo N, Bhat GM, Hafiz M, Khan MR, Misra R, Pandita SK, Raina BK, Thurow J, Thusu B, Ahmed W, Khullar S (2018) Petroleum systems and hydrocarbon potential of the North-West Himalaya of India and Pakistan. Earth Sci Rev 187:109–185. https://doi.org/10.1016/j.earscirev.2018.09.012

    Article  Google Scholar 

  • Critelli S, Garzanti E (1994) Provenance of the lower Tertiary Murree redbeds (Hazara-Kashmir Syntaxis, Pakistan) and initial rising of the Himalayas. Sediment Geol 89:265–284

    Article  Google Scholar 

  • Davies GR, Smith LB (2006) Structurally controlled hydrothermal dolomite reservoir facies: an overview. Am Assoc Pet Geol Bull 90:1641–1690. https://doi.org/10.1306/05220605164

    Article  Google Scholar 

  • Dera G, Brigaud B, Monna F, Laffont R, Pucéat E, Deconinck JF, Pellenard P, Joachimski MM, Durlet C (2011) Climatic ups and downs in a disturbed Jurassic world. Geology 39:215–218. https://doi.org/10.1130/G31579.1

    Article  Google Scholar 

  • Dickson J (1966) Carbonate identification and genesis as revealed by staining. J Sed Petrol 36:491–505

    Google Scholar 

  • Dickson JAD, Coleman ML (1980) Changes in carbon and oxygen isotope composition during limestone diagenesis. Sedimentology 27:107–118

    Article  Google Scholar 

  • Dipietro JA, Pogue K, Pogue KR (2004) Tectonostratigraphic subdivisions of the Himalaya: a view from the west. Tectonics. https://doi.org/10.1029/2003TC001554

    Article  Google Scholar 

  • Duggan JP, Mountjoy EW, Stasiuk LD (2001) Fault-controlled dolomitization at Swan Hills Simonette oil field (Devonian), deep basin west-central Alberta, Canada. Sedimentology 48:301–323. https://doi.org/10.1046/j.1365-3091.2001.00364.x

    Article  Google Scholar 

  • Gingras MK, Pemberton SG, Muelenbachs K, Machel HG (2004) Conceptual models for burrow-related, selective dolomitization with textural and isotopic evidence from the Tyndall Stone, Canada. Geobiology 2:21–30. https://doi.org/10.1111/j.1472-4677.2004.00022.x

    Article  Google Scholar 

  • Garzanti E (1993) Sedimentary evolution and drowning of a passive margin shelf (Giumal Group; Zanskar Tethys Himalaya, India): palaeoenvironmental changes during final break-up of Gondwanaland. Geol Soc Lond Spec Publ 74:277–298

    Article  Google Scholar 

  • Gregg JM, Bish DL, Kaczmarek SE, Machel HG (2015) Mineralogy, nucleation and growth of dolomite in the laboratory and sedimentary environment: a review. Sedimentology 62:1749–1769. https://doi.org/10.1111/sed.12202

    Article  Google Scholar 

  • Han Z, Hu X, Li J, Garzanti E (2016) Jurassic carbonate microfacies and relative sea-level changes in the Tethys Himalaya (southern Tibet). Palaeogeogr Palaeoclimatol Palaeoecol 456:1–20. https://doi.org/10.1016/j.palaeo.2016.05.012

    Article  Google Scholar 

  • Hanif M, Imraz M, Ali F, Haneef M, Saboor A, Iqbal S, Ahmad S Jr (2013) The inner ramp facies of the Thanetian Lockhart Formation, western Salt Range, Indus Basin, Pakistan. Arab J Geosci 7:4911–4926

    Article  Google Scholar 

  • Hauck TE, Corlett HJ, Grobe M, Walton EL, Sansjofre P (2018) Meteoric diagenesis and dedolomite fabrics in precursor primary dolomicrite in a mixed carbonate–evaporite system. Sedimentology 65:1827–1858. https://doi.org/10.1111/sed.12448

    Article  Google Scholar 

  • Hendry JP, Gregg JM, Shelton KL, Somerville ID, Crowley SF (2015) Origin, characteristics and distribution of fault-related and fracture-related dolomitization: insights from Mississippian carbonates, Isle of Man. Sedimentology 62:717–752. https://doi.org/10.1111/sed.12160

    Article  Google Scholar 

  • Hiatt EE, Pufahl PK (2014) Cathodoluminescence petrography of carbonate rocks: application to understanding diagenesis, reservoir quality, and pore system evolution: in Coulson I (ed) Cathodoluminescence and its application to geoscience: Mineralogical Association of Canada, Short Course Series 45: 75–96

  • Hollis C, Bastesen E, Boyce A, Corlett H, Gawthorpe R, Hirani J, Rotevatn A, Whitaker F (2017) Fault-controlled dolomitization in a rift basin. Geology 45:219–222. https://doi.org/10.1130/G38s394.1

    Article  Google Scholar 

  • Hussain HS, Fayaz M, Haneef M, Hanif M, Jan IU, Gul B (2013) Microfacies and diagenetic fabric of the Samana Suk Formation at Harnoi Section, Abbottabad, Khyber Pakhtunkhwa, Pakistan. J Himal Earth Sci 46:79–91

    Google Scholar 

  • Kaczmarek SE, Sibley DF (2011) On the evolution on dolomite stoichiometry and cation order during high-temperature synthesis experiments: an alternative model for the geochemical evolution of natural dolomites. Sediment Geol 240:30–40

    Article  Google Scholar 

  • Koeshidayatullah A, Corlett H, Stacey J, Swart PK, Boyce A, Hollis C (2020) Origin and evolution of fault-controlled hydrothermal dolomitization fronts: a new insight. Earth Planet Sci Lett 541:116291. https://doi.org/10.1016/j.epsl.2020.116291

    Article  Google Scholar 

  • Jan MQ, Windley BF, Khan A (1985) The Waziristan ophiolite, Pakistan; general geology and chemistry of chromite and associated phases. Econ Geol 80:294–306

    Article  Google Scholar 

  • Khan SD, Walker DJ, Hall SA, Burke KC, Shah MT, Stockli L (2009) Did the Kohistan-Ladakh island arc collide first with India? Bull Geol Soc Am 121:366–384. https://doi.org/10.1130/B26348.1

    Article  Google Scholar 

  • Kirmaci MZ (2008) Dolomitization of the late Cretaceous-Paleocene platform carbonates, Gölköy (Ordu), eastern Pontides, NE Turkey. Sediment Geol 203:289–306. https://doi.org/10.1016/j.sedgeo.2007.12.009

    Article  Google Scholar 

  • Kırmaci MZ, Yıldız M, Kandemir R, Eroğlu-Gümrük T (2018) Multistage dolomitization in Late Jurassic-Early Cretaceous platform carbonates (Berdiga Formation), Başoba Yayla (Trabzon), NE Turkey: Implications of the generation of magmatic arc on dolomitization. Mar Pet Geol 89:515–529. https://doi.org/10.1016/j.marpetgeo.2017.10.018

    Article  Google Scholar 

  • Kazmi AH, Rana RA (1982) Tectonic map of Pakistan. Scale 1:2000000, first edn. Geological Survey of Pakistan, Quetta

  • Land LS (1985) The origin of massive Dolomite. J Geol Educ 33:112–125. https://doi.org/10.5408/0022-1368-33.2.112

    Article  Google Scholar 

  • Liu Z, Chen D, Zhang J, Lü X, Wang Z, Liao W, Shi X, Tang J, Xie G (2019) Pyrite morphology as an indicator of paleoredox conditions and shale gas content of the Longmaxi and Wufeng shales in the middle Yangtze area, South China. Minerals. https://doi.org/10.3390/min9070428

    Article  Google Scholar 

  • Lohmann KC (1988) Geochemical patterns of meteoric diagenetic systems and their application to studies of paleokarst. In: James NP, Choquette PW (eds) Paleokarst. Springer, New York, pp 58–80

    Chapter  Google Scholar 

  • López-Horgue MA, Iriarte E, Schröder S, Fernández-Mendiola PA, Caline B, Corneyllie H, Frémont J, Sudrie M, Zerti S (2010) Structurally controlled hydrothermal dolomites in Albian carbonates of the Asón valley, Basque Cantabrian Basin, Northern Spain. Mar Pet Geol 27:1069–1092. https://doi.org/10.1016/j.marpetgeo.2009.10.015

    Article  Google Scholar 

  • Lumsden DN (1979) Discrepancy between thin section and X-ray estimates of dolomite in limestone. J Sediment Petrol 49:429–436. https://doi.org/10.1306/212F7761-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Machel HG, Lonnee J (2002) Hydrothermal dolomite—a product of poor definition and imagination. Sediment Geol 152:163–171. https://doi.org/10.1016/S0037-0738(02)00259-2

    Article  Google Scholar 

  • Machel H (2004) Concepts and models of dolomitization: a critical reappraisal. In: Braithwaite CJR, Rizzi G, Darke G (eds) The geometry and petrogenesis of dolomite hydrocarbon reservoirs. Geol Soc London Spec Publ 235:7–63

  • Magaritz M, Goldenberg L, Kafri U, Arad A (1980) Dolomite formation in the seawater–freshwater interface. Nature 287:622–624. https://doi.org/10.1038/287622a0

    Article  Google Scholar 

  • Maliva RG (1987) Quartz geodes: early diagenetic silicified anhydrite nodules related to dolomitization. J Sediment Petrol 57:1054–1059. https://doi.org/10.1306/212f8ce7-2b24-11d7-8648000102c1865d

    Article  Google Scholar 

  • Manche CJ, Kaczmarek SE (2019) Evaluating reflux dolomitization using a novel high-resolution record of dolomite stoichiometry: a case study from the Cretaceous of central Texas, USA. Geology 47:586–590. https://doi.org/10.1130/G46218.1

    Article  Google Scholar 

  • Martín-Martín JD, Gomez-Rivas E, Gómez-Gras D, Travé A, Ameneiro R, Koehn D, Bons PD (2017) Activation of stylolites as conduits for overpressured fluid flow in dolomitized platform carbonates. Geol Soc London Spec Publ 459(1):157–176. https://doi.org/10.1144/SP459.3

    Article  Google Scholar 

  • Martín-Martín JD, Travé A, Gomez-Rivas E, Salas R, Sizun JP, Vergés J, Corbella M, Stafford SL, Alfonso P (2015) Fault-controlled and stratabound dolostones in the Late Aptian-earliest Albian Benassal Formation (Maestrat Basin, E Spain): petrology and geochemistry constrains. Mar Pet Geol 65:83–102. https://doi.org/10.1016/j.marpetgeo.2015.03.019

    Article  Google Scholar 

  • Melim L, Westphal H, Swart P, Eberli G, Munnecke A (2002) Questioning carbonate diagenetic paradigms: evidence from the Neogene of the Bahamas. Mar Geol 185:27–53. https://doi.org/10.1016/S00253227(01)00289-4

    Article  Google Scholar 

  • Montañez IP, Read JF (1992) Eustatic control on early dolomitization of cyclic peritidal carbonates: Evidence from the Early Ordovician Upper Knox Group, Appalachians. Geol Soc Am 10(7):872–886. https://doi.org/10.1130/0016-7606(1992)104<0872

    Article  Google Scholar 

  • Moore CH (2001) Diagenetic environments of porosity modification and tools for their recognition in the geologic record. Carbonate reservoirs porosity evolution and diagenesis in a sequence stratigraphic framework. Dev Sedimentol 55:61–88

    Article  Google Scholar 

  • Mozafari M, Swennen R, Balsamo F, Clemenzi L, Storti F, El Desouky H, Vanhaecke F, Tueckmantel C, Solum J, Taberner C (2015) Paleofluid evolution in fault-damage zones: evidence from fault-fold interaction events in the Jabal Qusaybah Anticline (Adam Foothills, North Oman). J Sediment Res 85:1525–1551. https://doi.org/10.2110/jsr.2015.95

    Article  Google Scholar 

  • Nader FH, Swennen R, Ellam RM (2007) Field geometry, petrography and geochemistry of a dolomitization front (Late Jurassic, central Lebanon). Sedimentology 54:1093–1119. https://doi.org/10.1111/j.1365-3091.2007.00874.x

    Article  Google Scholar 

  • Nader FH, Swennen R, Ottenburgs R (2003) Karst-meteoric dedolomitization in Jurassic carbonates, Lebanon. Geol Belg 6:3–23

    Google Scholar 

  • Nizami RA, Sheikh RA (2009) Sedimemtology of the Middle Jurassic Samana Suk Formation, Makarwal Section, Surghar Range, Trans Indus Ranges, Pakistan. Geol Bull Punjab Univ 44:11–25

    Google Scholar 

  • Nizami RA (2008) Sedimentology of Middle Jurassic Samana Suk Formation in the Trans Indus Ranges Pakistan. PhD Thesis (Un-published) Institute of Geology, University of the Punjab, Pakistan.

  • Oliver J (1986) Fluids expelled tectonically from orogenic belts: their role in hydrocarbon migration and other geologic phenomena. Geology 14:99. https://doi.org/10.1130/0091-7613(1986)14<99:FETFOB>2.0.CO;2

    Article  Google Scholar 

  • Qasim M, Ding L, Khan MA, Jadoon IAK, Haneef M, Baral U, Cai F, Wang H, Yue Y (2018) Tectonic implications of Detrital Zircon ages from lesser Himalayan Mesozoic-Cenozoic Strata, Pakistan. Geochem Geophys Geosyst 19:1636–1659. https://doi.org/10.1002/2017GC006895

    Article  Google Scholar 

  • Qing H, Mountjoy EW (1989) Multistage dolomitization in Rainbow buildups, Middle Devonian Keg River Formation, Alberta, Canada. J Sediment Res 59:114–126

    Google Scholar 

  • Qing H, Mountjoy EW (1994) Formation of coarsely crystalline, hydrothermal dolomite reservoirs in the Presqu'ile barrier, Western Canada sedimentary basin. AAPG Bull 78:55–77

    Google Scholar 

  • Qureshi MA, Baig S, Munir MH (1997) Reconnaissance micro-facies analysis of the upper Jurassic Samana Suk Formation, Northern Hazara Pakistan. Geol Bull Punjab Univ 31–32:145–151

    Google Scholar 

  • Qureshi KA, Ghazi S, Butt AA (2008) Shallow Shelf Sedimentation of the Jurassic Samana Suk Limestone, Kala Chitta Range, Lesser Himalayas, Pakistan. Geol Bull Punjab Univ 43:1–14

    Google Scholar 

  • Radke BM, Mathis RL (1980) On the formation and occurrence of saddle dolomite. J Sediment Res 50:1149–1168

    Google Scholar 

  • Rahim HU, Shah MM, Corbella M, Cardellach E, Nuvarro-Ciurana D (2019) Mechanism of multiphase dolomitization in the Jurassic Carbonates (Samana Suk Formation), Himalayan Foreland Basin, North West Pakistan. 16th International meeting of carbonate sedimentologists, Bathurst meeting Mallorca Spain 16: 92.

  • Rehman HU, Seno T, Yamamoto H, Khan T (2011) Timing of collision of the Kohistan-Ladakh Arc with India and Asia: Debate. Isl Arc 20:308–328. https://doi.org/10.1111/j.1440-1738.2011.00774.x

    Article  Google Scholar 

  • Saboor A, Ali F, Ahmad S, Haneef M, Hanif M, Imraz M, Ali N, Swati MAF, Zahid M, Sadiq I (2015) A preliminary account of the middle Jurassic plays in Najafpur village, southeastern Hazara, Khyber Pakhtunkhwa, Pakistan. J Himal Earth Sci 48:41–49

    Google Scholar 

  • Searle MP, Khan MA, Fraser JE, Gough SJ, Jan MQ (1999) The tectonic evolution of the Kohistan-Karakoram collision belt along the Karakoram Highway transects, north Pakistan. Tectonics 18:929–949

    Article  Google Scholar 

  • Shah MM, Rahim HU, Hassan A, Mustafa MR, Ahmad I (2019) Facies control on selective dolomitization and its impact on reservoir heterogeneities in the Samana Suk Formation (middle Jurassic), Southern Hazara Basin (NW Himalaya, Pakistan): an outcrop analogue. Geosci J. https://doi.org/10.1007/s12303-019-0026-7

    Article  Google Scholar 

  • Shah MM, Ahmed W, Ahsan N, Lisa M (2016) Fault-controlled, bedding-parallel dolomite in the middle Jurassic Samana Suk Formation in Margalla Hill Ranges, Khanpur area (North Pakistan): petrography, geochemistry, and petrophysical characteristics. Arab J Geosci 8:2551–2565. https://doi.org/10.1007/s12517-016-2413-y

    Article  Google Scholar 

  • Shah SMI (2009) Stratigraphy of Pakistan. Geol Surv Pakistan Mem 22:1–381

    Google Scholar 

  • Shah MT, Moon CJ (2004) Mineralogy, geochemistry and genesis of the ferromanganese ores from Hazara area, NW Himalayas, northern Pakistan. J Asian Earth Sci 23:1–15. https://doi.org/10.1016/S1367-9120(03)00099-3

    Article  Google Scholar 

  • Sharp I, Gillespie P, Morsalnezhad D, Taberner C, Karpuz R, Vergés J, Horbury A, Pickard N, Garland J, Hunt D (2010) Stratigraphic architecture and fracture-controlled dolomitization of the Cretaceous Khami and Bangestan groups: an outcrop case study, Zagros Mountains, Iran. Geol Soc London Spec Publ 329:343–396. https://doi.org/10.1144/SP329.14

    Article  Google Scholar 

  • Sibley DF (1982) The origin of common dolomite fabrics; clues from the Pliocene. J Sediment Res 52:1087–1100

    Google Scholar 

  • Sibley DF, Gregg JM (1987) Classification of dolomite rock textures. J Sediment Pet 57:967–975

    Google Scholar 

  • Swart PK (2015) The geochemistry of carbonate diagenesis : The past, present and future. Sedimentology. https://doi.org/10.1111/sed.12205

    Article  Google Scholar 

  • Tucker ME, Wright VP (1990) Carbonate sedimentology. Blackwell Scientific Publications, Oxford

    Book  Google Scholar 

  • Umar M, Sabir MA, Farooq M, Khan MMSS, Faridullah F, Jadoon UK, Khan AS (2014) Stratigraphic and sedimentological attributes in Hazara Basin Lesser Himalaya, North Pakistan: their role in deciphering minerals potential. Arab J Geosci 8:1653–1667. https://doi.org/10.1007/s12517-014-1322-1

    Article  Google Scholar 

  • Vandeginste V, Swennen R, Allaeys M, Ellam RM, Osadetz K, Roure F (2012) Challenges of structural diagenesis in foreland fold-and-thrust belts: a case study on paleofluid flow in the Canadian Rocky Mountains West of Calgary. Mar Pet Geol 35:235–251. https://doi.org/10.1016/j.marpetgeo.2012.02.014

    Article  Google Scholar 

  • Vandeginste V, John CM (2012) Influence of climate and dolomite composition on dedolomitization: insights from a multi-proxy study in the central Oman Mountains. J Sediment Res 82:177–195. https://doi.org/10.2110/jsr.2012.19

    Article  Google Scholar 

  • Vandeginste V, John CM, Manning C (2013) Interplay between depositional facies, diagenesis and early fractures in the Early Cretaceous Habshan Formation, Jebel Madar, Oman. Mar Pet Geol 43:489–503

    Article  Google Scholar 

  • Vandeginste V, John CM, Cosgrove JW, Manning C (2014) Dimensions, texture-distribution, and geochemical heterogeneities of fracture-related dolomite geobodies hosted in Ediacaran limestones, northern Oman. Am Assoc Pet Geol Bull 98:1789–1809. https://doi.org/10.1306/05121413127

    Article  Google Scholar 

  • Warren J (2000) Dolomite: occurrence, evolution and economically important associations. Earth Sci Rev 52:1–81. https://doi.org/10.1016/S0012-8252(00)00022-2

    Article  Google Scholar 

  • Widodo RW, Laya JC (2017) Controls on diagenesis and dolomitization of peritidal facies, Early Cretaceous Lower Edwards Group, central Texas, USA. Facies. https://doi.org/10.1007/s10347-017-0503-2

    Article  Google Scholar 

  • Yeats RS, Hussain A (1987) Timing of structural events in the Himalayan Foothills. Geol Soc Am 99:161–176

    Article  Google Scholar 

  • Yin A (2006) Cenozoic tectonic evolution of the Himalayan orogen as constrained by along-strike variation of structural geometry, exhumation history, and foreland sedimentation. Earth Sci Rev. https://doi.org/10.1016/j.earscirev.2005.05.004

    Article  Google Scholar 

  • Zhao H, Jones B (2012) Origin of “island dolostones”: a case study from the Cayman Formation (Miocene), Cayman Brac, British West Indies. Sediment Geol 243–244:191–206. https://doi.org/10.1016/j.sedgeo.2011.11.004

    Article  Google Scholar 

  • Zenger DH, Dunham JB Ethington RL (1980) Concepts and models of dolomitization-an introduction. S.E.P.M. Spec Publ 28:1–426

    Google Scholar 

Download references

Acknowledgements

This work is a part of Higher Education Commission (HEC) of Pakistan funded research project no. 20-4413/R&D/HEC/14-1988 and is the part of PhD dissertation of Hamad ur Rahim. Dr. Juan Diego Martín-Martín, University of Barcelona is especially thanked for his support in CL investigations and some fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mumtaz Muhammad Shah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahim, H., Shah, M.M., Corbella, M. et al. Diagenetic evolution and associated dolomitization events in the middle Jurassic Samana Suk Formation, Lesser Himalayan Hill Ranges, NW Pakistan. Carbonates Evaporites 35, 101 (2020). https://doi.org/10.1007/s13146-020-00634-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00634-0

Keywords

Navigation