Skip to main content
Log in

Non-viral Gene Disruption by CRISPR/Cas9 Delivery Using Cell-permeable and Protein-stabilizing 30Kc19 Protein

  • Research Paper
  • Published:
Biotechnology and Bioprocess Engineering Aims and scope Submit manuscript

Abstract

CRISPR/Cas9 system has served a new insight in genome editing of eukaryotes, including human cells. In this system, delivery of Cas9 nuclease with guide RNA has been central challenge in developing safe and efficient techniques. The viral delivery of genes encoding these two components i.e. Cas9 and guide RNA may cause unexpected integration of the DNA sequence into the host cell genome, and lead to potential safety problems such as tumorigenesis. Herein, we report that the Cas9 protein can be directly delivered into the human cells through fusion with 30Kc19, a cell-penetrating and protein-stabilizing protein originating from silkworm. The 30Kc19-conjugated Cas9 (30Kc19-Cas9) showed higher stability than native Cas9 for thermal and chemical-induced inactivation in DNA-cleavable activity. In addition, it was demonstrated that 30Kc19-Cas9 was efficiently delivered into human cells and resulted in targeted gene disruption with single guide RNA by showing gene expression and site-specific mutations in the genome. With the advantages of efficient delivery in addition to the enhancement of Cas9 stability, this method is expected to provide a versatile strategy to advance non-viral and clinically-feasible genome editing for in vivo applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Doudna, J. A. and E. Charpentier (2014) The new frontier of genome engineering with CRISPR-Cas9. Science. 346: 1258096.

    Article  Google Scholar 

  2. Woo, J. W., J. Kim, S. I. Kwon, C. Corvalán, S. W. Cho, H. Kim, S. G. Kim, S. T. Kim, S. Choe, and J. S. Kim (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nat. Biotechnol. 33: 1162–1164.

    Article  CAS  Google Scholar 

  3. Cox, D. B. T., R. J. Platt, and F. Zhang (2015) Therapeutic genome editing: prospects and challenges. Nat. Med. 21: 121–131.

    Article  CAS  Google Scholar 

  4. Jinek, M., K. Chylinski, I. Fonfara, M. Hauer, J. A. Doudna, and E. Charpentier (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science. 337: 816–821.

    Article  CAS  Google Scholar 

  5. Cong, L., F. A. Ran, D. Cox, S. Lin, R. Barretto, N. Habib, P. D. Hsu, X. Wu, W. Jiang, L. A. Marraffini, and F. Zhang (2013) Multiplex genome engineering using CRISPR/Cas systems. Science. 339: 819–823.

    Article  CAS  Google Scholar 

  6. Bibikova, M., M. Golic, K. G. Golic, and D. Carroll (2002) Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics. 161: 1169–1175.

    Article  CAS  Google Scholar 

  7. Hsu, P. D., E. S. Lander, and F. Zhang (2014) Development and applications of CRISPR-Cas9 for genome engineering. Cell. 157: 1262–1278.

    Article  CAS  Google Scholar 

  8. Barrangou, R. and J. A. Doudna (2016) Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34: 933–941.

    Article  CAS  Google Scholar 

  9. Wang, H., H. Yang, C. S. Shivalila, M. M. Dawlaty, A. W. Cheng, F. Zhang, and R. Jaenisch (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153: 910–918.

    Article  CAS  Google Scholar 

  10. Chu, V. T., T. Weber, B. Wefers, W. Wurst, S. Sander, K. Rajewsky, and R. Kühn (2015) Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33: 543–548.

    Article  CAS  Google Scholar 

  11. Richardson, C. D., G. J. Ray, M. A. DeWitt, G. L. Curie, and J. E. Corn (2016) Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA. Nat. Biotechnol. 34: 339–344.

    Article  CAS  Google Scholar 

  12. Kim, K., S. M. Ryu, S. T. Kim, G. Baek, D. Kim, K. Lim, E. Chung, S. Kim, and J. S. Kim (2017) Highly efficient RNA-guided base editing in mouse embryos. Nat. Biotechnol. 35: 435–437.

    Article  CAS  Google Scholar 

  13. Ma, H., N. Marti-Gutierrez, S. W. Park, J. Wu, Y. Lee, K. Suzuki, A. Koski, D. Ji, T. Hayama, R. Ahmed, H. Darby, C. Van Dyken, Y. Li, E. Kang, A. R. Park, D. Kim, S. T. Kim, J. Gong, Y. Gu, X. Xu, D. Battaglia, S. A. Kreig, D. M. Lee, D. H. Wu, D. P. Wolf, S. B. Heitner, J. C. I. Belmonte, P. Amato, J. S. Kim, S. Kaul, and S. Mitalipov (2017) Correction of a pathogenic gene mutation in human embryos. Nature. 548: 413–419.

    Article  CAS  Google Scholar 

  14. Kim, S., D. Kim, S. W. Cho, J. Kim, and J. S. Kim (2014) Highly efficient RNA-guided genome editing in human cells via delivery of purified Cas9 ribonucleoproteins. Genome Res. 24: 1012–1019.

    Article  CAS  Google Scholar 

  15. Zuris, J. A., D. B. Thompson, Y. Shu, J. P. Guilinger, J. L. Bessen, J. H. Hu, M. L. Maeder, J. K. Joung, Z. Y. Chen, and D. R. Liu (2015) Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33: 73–80.

    Article  CAS  Google Scholar 

  16. Yu, X., X. Liang, H. Xie, S. Kumar, N. Ravinder, J. Potter, X. de Mollerat du Jeu, and J. D. Chesnut (2016) Improved delivery of Cas9 protein/gRNA complexes using lipofectamine CRISPRMAX. Biotechnol. Lett. 38: 919–929.

    Article  CAS  Google Scholar 

  17. Staahl, B. T., M. Benekareddy, C. Coulon-Bainier, A. A. Banfal, S. N. Floor, J. K. Sabo, C. Urnes, G. A. Munares, A. Ghosh, and J. A. Doudna (2017) Efficient genome editing in the mouse brain by local delivery of engineered Cas9 ribonucleoprotein complexes. Nat. Biotechnol. 35: 431–434.

    Article  CAS  Google Scholar 

  18. Ramakrishna, S., A. B. Kwaku Dad, J. Beloor, R. Gopalappa, S. K. Lee, and H. Kim (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res. 24: 1020–1027.

    Article  CAS  Google Scholar 

  19. Mout, R., M. Ray, G. Yesilbag Tonga, Y. W. Lee, T. Tay, K. Sasaki, and V. M. Rotello (2017) Direct cytosolic delivery of CRISPR/Cas9-ribonucleoprotein for efficient gene editing. ACS Nano. 11: 2452–2458.

    Article  CAS  Google Scholar 

  20. Lee, K., M. Conboy, H. M. Park, F. Jiang, H. J. Kim, M. A. Dewitt, V. A. Mackley, K. Chang, A. Rao, C. Skinner, T. Shobha, M. Mehdipour, H. Liu, W. C. Huang, F. Lan, N. L. Bray, S. Li, J. E. Corn, K. Kataoka, J. A. Doudna, I. Conboy, and N. Murthy (2017) Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1: 889–901.

    Article  CAS  Google Scholar 

  21. Kim, S. M., S. C. Shin, E. E. Kim, S. H. Kim, K. Park, S. J. Oh, and M. Jang (2018) Simple in vivo gene editing via direct self-assembly of Cas9 ribonucleoprotein complexes for cancer treatment. ACS Nano. 12: 7750–7760.

    Article  CAS  Google Scholar 

  22. Kim, E. J., W. J. Rhee, and T. H. Park (2001) Isolation and characterization of an apoptosis-inhibiting component from the hemolymph of Bombyx mori. Biochem. Biophys. Res. Commun. 285: 224–228.

    Article  CAS  Google Scholar 

  23. Park, J. H., J. H. Lee, H. H. Park, W. J. Rhee, S. S. Choi, and T. H. Park (2012) A protein delivery system using 30Kc19 cell-penetrating protein originating from silkworm. Biomaterials. 33: 9127–9134.

    Article  CAS  Google Scholar 

  24. Park, H. H., Y. Sohn, J. W. Yeo, J. H. Park, H. J. Lee, J. Ryu, W. J. Rhee, and T. H. Park (2014) Identification and characterization of a novel cell-penetrating peptide of 30Kc19 protein derived from Bombyx mori. Process Biochem. 49: 1516–1526.

    Article  CAS  Google Scholar 

  25. Park, J. H., H. H. Park, S. S. Choi, and T. H. Park (2012) Stabilization of enzymes by the recombinant 30Kc19 protein. Process Biochem. 47: 164–169.

    Article  CAS  Google Scholar 

  26. Park, J. H., H. J. Lee, H. H. Park, W. J. Rhee, and T. H. Park (2015) Stabilization of cellular mitochondrial enzyme complex and sialyltransferase activity through supplementation of 30Kc19 protein. Appl. Microbiol. Biotechnol. 99: 2155–2163.

    Article  CAS  Google Scholar 

  27. Ryu, J., H. H. Park, J. H. Park, H. J. Lee, W. J. Rhee, and T. H. Park (2016) Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl. Microbiol. Biotechnol. 100: 3523–3532.

    Article  CAS  Google Scholar 

  28. Lee, J., H. H. Park, and J. H. Park (2019) Efficient production of cell-permeable Oct4 protein using 30Kc19 protein originating from silkworm. Biotechnol. Bioprocess Eng. 24: 964–971.

    Article  CAS  Google Scholar 

  29. Fu, Y., J. A. Foden, C. Khayter, M. L. Maeder, D. Reyon, J. K. Joung, and J. D. Sander (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat. Biotechnol. 31: 822–826.

    Article  CAS  Google Scholar 

  30. Kostrikis, L. G., Y. Huang, J. P. Moore, S. M. Wolinsky, L. Zhang, Y. Guo, L. Deutsch, J. Phair, A. U. Neumann, and D. D. Ho (1998) A chemokine receptor CCR2 allele delays HIV-1 disease progression and is associated with a CCR5 promoter mutation. Nat. Med. 4: 350–353.

    Article  CAS  Google Scholar 

  31. Hütter, G., D. Nowak, M. Mossner, S. Ganepola, A. Müssig, K. Allers, T. Schneider, J. Hofmann, C. Kücherer, O. Blau, I. W. Blau, W. K. Hoffmann, and E. Thiel (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 360: 692–698.

    Article  Google Scholar 

  32. He, J., Y. Chen, M. Farzan, H. Choe, A. Ohagen, S. Gartner, J. Busciglio, X. Yang, W. Hofoiann, W. Newman, C. R. Mackay, J. Sodroski, and D. Gabuzda (1997) CCR3 and CCR5 are co-receptors for HIV-1 infection of microglia. Nature. 385: 645–649.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation (NRF) funded by Korean Government (Ministry of Science and ICT) (No. 2015R1C1A1A01052831 and 2017M3A9C6031798) and 2017 Research Grant from Kangwon National University (No. 520170405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ju Hyun Park.

Ethics declarations

Neither ethical approval nor informed consent was required for this study.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y.J., Lee, H., Cha, H. et al. Non-viral Gene Disruption by CRISPR/Cas9 Delivery Using Cell-permeable and Protein-stabilizing 30Kc19 Protein. Biotechnol Bioproc E 25, 724–733 (2020). https://doi.org/10.1007/s12257-020-0068-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12257-020-0068-8

Keywords

Navigation