Skip to main content
Log in

Radix-8 Modified Booth Fixed-Width Signed Multipliers with Error Compensation

  • Research Article-Electrical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The Booth multipliers require lower number of addition operations compared to the traditional multipliers. Further, higher radix Booth multiplier requires lesser number of adders in its circuit implementation. Multiply and accumulate (MAC) unit plays a crucial role in digital signal processing circuits. Handling the data in area-efficient MAC circuits is challenging since the data word length closely doubles on each multiplication. The data path of higher word length possesses higher hardware complexity. However, such hardware complexity can be minimized by deploying the fixed-width multipliers (FWM) in MAC circuits. In FWMs, the multiplication result of \({{X}_{L-\mathrm{bits}}}\times {{Y}_{L-\mathrm{bits}}}\) is rounded to the higher significant L bits by truncating the rest of lower significant bits. Nevertheless, this truncation introduces the error in multiplication result. This paper presents a radix-8 Booth-based fixed-width signed multipliers with error compensation. Moreover, the estimation of bias value for the error compensation in radix-8 Booth FWM is presented. Accuracy of the fixed-width multiplication with the proposed compensation is analyzed. In addition, the multiplier circuits based on the proposed methods are designed and implemented and the experimental results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang, J.-P.; Kuang, S.-R.; Liang, S.-C.: High-accuracy fixed-width modified Booth multipliers for lossy applications. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 19(1), 52–60 (2011)

    Article  Google Scholar 

  2. Min-An, S.; Lan-Da, V.; Sy-Yen, K.: Adaptive low-error fixed-width Booth multipliers. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 90(6), 1180–1187 (2007)

    Google Scholar 

  3. Li, C.-Y.; Chen, Y.-H.; Chang, T.-Y.; Chen, J.-N.: A probabilistic estimation bias circuit for fixed-width Booth multiplier and its DCT applications. IEEE Trans. Circuits Syste. II Express Br. 58(4), 215–219 (2011)

    Article  Google Scholar 

  4. Jou, S.-J.; Tsai, M.-H.; Tsao, Y.-L.: Low-error reduced-width Booth multipliers for DSP applications. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 50(11), 1470–1474 (2003)

    Article  Google Scholar 

  5. Bewick, G. W.: Fast multiplication: algorithms and implementation. Ph. D. dissertation, Stanford University (1994)

  6. Del Barrio, A.A.; Hermida, R.: A slack-based approach to efficiently deploy radix 8 booth multipliers. in IEEE design, automation & test in Europe conference & exhibition (DATE). 2017, 1153–1158 (2017)

  7. Muralidharan, R.; Chang, C.-H.: Radix-4 and radix-8 Booth encoded multi-modulus multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 2940–2952 (2013)

    Article  Google Scholar 

  8. Van, L.-D.; Wang, S.-S.; Feng, W.-S.: Design of the lower error fixed-width multiplier and its application. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 47(10), 1112–1118 (2000)

    Article  Google Scholar 

  9. Juang, T.-B.; Hsiao, S.-F.: Low-error carry-free fixed-width multipliers with low-cost compensation circuits. IEEE Trans. Circuits Syst. II Express Br. 52(6), 299–303 (2005)

    Article  Google Scholar 

  10. Cho, K.-J.; Lee, K.-C.; Chung, J.-G.; Parhi, K.K.: Design of low-error fixed-width modified Booth multiplier. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(5), 522–531 (2004)

    Article  Google Scholar 

  11. Kuang, S.-R.; Wang, J.-P.; Guo, C.-Y.: Modified Booth multipliers with a regular partial product array. IEEE Trans. Circuits Syst. II Express Br. 56(5), 404–408 (2009)

    Article  Google Scholar 

  12. Chen, Y.-H.; Li, C.-Y.; Chang, T.-Y.: Area-effective and power-efficient fixed-width Booth multipliers using generalized probabilistic estimation bias. IEEE J. Emerg. Sel. Top. Circuits Syst. 1(3), 277–288 (2011)

    Article  Google Scholar 

  13. Chen, Y.-H.; Chang, T.-Y.: A high-accuracy adaptive conditional-probability estimator for fixed-width Booth multipliers. IEEE Trans. Circuits Syst. I Regul. Pap. 59(3), 594–603 (2012)

    Article  MathSciNet  Google Scholar 

  14. Chen, Y.-H.: An accuracy-adjustment fixed-width Booth multiplier based on multilevel conditional probability. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 23(1), 203–207 (2015)

    Article  Google Scholar 

  15. Jon, S.-J.; Wang, H.-H.: Fixed-width multiplier for DSP application. In: IEEE Proceedings of International conference on computer design, pp. 318–322 (2000)

  16. Jiang, H.; Han, J.; Qiao, F.; Lombardi, F.: Approximate radix-8 Booth multipliers for low-power and high-performance operation. IEEE Trans. Comput. 65(8), 2638–2644 (2016)

    Article  MathSciNet  Google Scholar 

  17. Wang, C.-Y.; Kuo, C.-B.; Jou, J.-Y.: Hybrid wordlength optimization methods of pipelined FFT processors. IEEE Trans. Comput. 56(8), 1105–1118 (2007)

    Article  MathSciNet  Google Scholar 

  18. Jou, J.M.; Kuang, S.R.; Der Chen, R.: Design of low-error fixed-width multipliers for DSP applications. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 46(6), 836–842 (1999)

    Article  Google Scholar 

  19. Bhusare, S.S.; Kanchana Bhaaskaran, V.: Low-power high-accuracy fixed-width radix-8 Booth multiplier using probabilistic estimation technique. J. Circuits Syst. Comput. 26(5), 1750079 (2016)

    Article  Google Scholar 

  20. Mirhosseini, S.M.; Molahosseini, A.S.; Hosseinzadeh, M.; Sousa, L.; Martins, P.: A reduced-bias approach with a lightweight hard-multiple generator to design a radix-8 modulo \(2^{n}+ 1\) multiplier. IEEE Trans. Circuits Syst. II Express Br. 64(7), 817–821 (2016)

    Article  Google Scholar 

  21. Del Barrio, A.A.; Hermida, R.; Ogrenci-Memik, S.: A combined arithmetic-high-level synthesis solution to deploy partial carry-save radix-8 booth multipliers in datapaths. IEEE Trans. Circuits Syst. I Regul. Pap. 66(2), 742–755 (2018)

    Article  Google Scholar 

  22. Del Barrio, A.A.; Hermida, R.; Memik, S.O.: A partial carry-save on-the-fly correction multispeculative multiplier. IEEE Trans. Comput. 65(11), 3251–3264 (2016)

    Article  MathSciNet  Google Scholar 

  23. CIC referenced flow for cell-based IC design, Document no. CIC-DSD-RD-08-01. CHIP implementation center, CIC, Taiwan, Tech. Rep. (2008)

  24. Tang, S.-N.; Tsai, J.-W.; Chang, T.-Y.: A 2.4-GS/s FFT processor for OFDM-based WPAN applications. IEEE Trans. Circuits Syst. II Express Br. 57(6), 451–455 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govinda Rao Locharla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Locharla, G.R., Mahapatra, K.K. & Ari, S. Radix-8 Modified Booth Fixed-Width Signed Multipliers with Error Compensation. Arab J Sci Eng 46, 1115–1125 (2021). https://doi.org/10.1007/s13369-020-04920-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04920-w

Keywords

Navigation