Skip to main content
Log in

Unconditionally optimal convergence analysis of second-order BDF Galerkin finite element scheme for a hybrid MHD system

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a second-order backward differentiation formula (BDF) scheme for a hybrid MHD system is considered. Being different with the steady and nonstationary MHD equations, the hybrid MHD system is coupled by the time-dependent Navier-Stokes equations and the steady Maxwell equations. By using the standard extrapolation technique for the nonlinear terms, the proposed BDF scheme is a semi-implicit scheme. Furthermore, this scheme is a decoupled scheme such that the magnetic field and the velocity can be solved independently at the same time as discrete level. A rigorous error analysis is done and we prove the unconditionally optimal second-order convergence rate \(\mathcal O(h^{2}+({\Delta } t)^{2})\) in L2 norm for approximations of the magnetic field and the velocity, where h and Δt are the grid mesh and the time step, respectively. Finally, the numerical results are displayed to illustrate the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. An, R., Li, Y.: Error analysis of first-order projection method for time-dependent magnetohydrodynamics equations. Appl. Numer. Math. 112, 167–181 (2017)

    MathSciNet  MATH  Google Scholar 

  2. An, R., Zhou, C.: Error analysis of a fractional-step method for magnetohydrodynamics equations. J. Comput. Appl. Math. 313, 168–184 (2017)

    MathSciNet  MATH  Google Scholar 

  3. Brenner, S., Scott, L.: The mathematical theory of finite element methods. Springer, New York (1994)

    MATH  Google Scholar 

  4. Gao, H., Qiu, W.F.: A linearized energy preserving finite element method for the dynamical incompressible magnetohydrodynamics equations. Comput. Methods Appl. Mech. Eng. 346, 982–1001 (2019)

    MATH  Google Scholar 

  5. Gerbeau, J.: A stabilized finite elemenet method for the incompressible magnetohydrodynamic equations. Numer. Math. 87, 83–111 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Gerbeau, J., Bris, C.L.: Mathematical study of a coupled system arising in magnetohydrodynamics, Technical Report CERMICS

  7. Gerbeau, J, Bris, C.L.: A coupled system arising in magnetohydrodynamics. Appl. Math. Lett. 12, 53–57 (1999)

    MathSciNet  MATH  Google Scholar 

  8. Gerbeau, J., Bris, C.L., Lelièvre, T.: Mathematical methods for the magnetohydrodynamics of liquid metals. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  9. Gunzburger, M., Meir, A., Peterson, J.: On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompresible magnetohydrodynamics. Math. Comp. 56, 523–563 (1991)

    MathSciNet  MATH  Google Scholar 

  10. He, Y.: Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations. IMA J. Numer. Anal. 35, 767–801 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Heywood, J., Rannacher, R.: Finite-element approximation of the nonstationary Navier-Stokes problem Part IV: error analysis for second-order time discretization. SIAM J. Numer. Anal. 27, 353–384 (1990)

    MathSciNet  MATH  Google Scholar 

  12. Li, Y., Ma, Y., An, R.: Decoupled, semi-implicit scheme for a coupled system arising in magnetohydrodynamics problem. Appl. Numer. Math. 127, 142–163 (2018)

    MathSciNet  MATH  Google Scholar 

  13. Li, Y., Luo, X.: Second-order semi-implicit Crank-Nicolson scheme for a coupled magnetohydrodynamics system. Appl. Numer. Math. 145, 48–68 (2019)

    MathSciNet  MATH  Google Scholar 

  14. Li, B., Sun, W.: Error analysis of linearized semi-implicit Galerkin finite element methods for nonlinear parabolic equations. Inter. J. Numer. Anal. Model. 10, 622–633 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Li, B., Sun, W.: Unconditional convergence and optimal error estimates of a Galerkin-mixed FEM for incompressible miscible flow in porous media. SIAM J. Numer. Anal. 51, 1959–1977 (2013)

    MathSciNet  MATH  Google Scholar 

  16. Prohl, A.: Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamic system. ESAIM:M2AN 42, 1065–1087 (2008)

    MathSciNet  MATH  Google Scholar 

  17. Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)

    MathSciNet  MATH  Google Scholar 

  18. Temam, R.: Navier-stokes equations, North-Holland, Amsterdam (1977)

  19. Yang, X.F., Zhang, G.D., He, X.M.: Convergence analysis of an unconditionally energy stable projection scheme for magnetohydrodynamic equations. Appl. Numer. Math. 136, 235–256 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Zhang, G.D., He, X.M., Yang, X.F.: A decoupled, linear and unconditionally energy stable scheme with finite element discretizations for magnetohydrodynamic equations. J. Sci. Comput. 81, 1678–1711 (2019)

    MathSciNet  MATH  Google Scholar 

  21. Zhang, G.D., He, X.M., Yang, X.F.: Fully decoupled, linear and unconditionally energy stable time discretization for solving the magnetohydrodynamic equations. J. Comput. Appl. Math 369, #112636 (2020)

    MATH  Google Scholar 

  22. Zhang, Y., Hou, Y., Shan, L.: Numerical analysis of the Crank-Nicolson extrapolation time discrete scheme for magnetohydrodynamics flows. Numer. Methods Part. Diff. Equa. 31, 2169–2208 (2015)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (No.11771337) and by Zhejiang Provincial Natural Science Foundation (No. LY18A010021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Li.

Additional information

Communicated by: Jan Hesthaven

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zhai, C. Unconditionally optimal convergence analysis of second-order BDF Galerkin finite element scheme for a hybrid MHD system. Adv Comput Math 46, 75 (2020). https://doi.org/10.1007/s10444-020-09815-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09815-w

Keywords

Mathematics Subject Classification (2010)

Navigation