Skip to main content
Log in

Self-reinforcement of Light, Temperature-Resistant Silica Nanofibrous Aerogels with Tunable Mechanical Properties

  • Research Article
  • Published:
Advanced Fiber Materials Aims and scope Submit manuscript

Abstract

Silica aerogels have attracted significant interest in thermal insulation applications because of their low thermal conductivity and great thermal stability, however, their fragility has limited their application in every-day products. Herein, a self-reinforcing strategy to design silica nanofibrous aerogels (SNFAs) is proposed using electrospun SiO2 nanofibers as the matrix and a silica sol as a high-temperature nanoglue. Adopting this approach results in a strong and compatible interfacial interaction between the SiO2 fibers and the silica sol, which results in the SNFAs exhibiting high-temperature-resistant and tunable mechanical properties from elastic to rigid. Furthermore, additional properties such as low density, high thermal insulation performance, and fire-resistance are still retained. The self-reinforcing method described herein may be extended to numerous other new ceramic aerogels that require robust mechanical properties and high-temperature resistance.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Soleimani Dorcheh A, Abbasi MH. Silica aerogel: synthesis, properties and characterization. J Mater Process Technol. 2008;199:10–26.

    CAS  Google Scholar 

  2. Yang S, Wang XQ, Dou LY, Yu JY, Ding B. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity. Sci Adv. 2018;4:8925.

    Google Scholar 

  3. Alain CP, Gerard MP. Chemistry of aerogels and their applications. Chem Rev. 2002;102:4243–66.

    Google Scholar 

  4. Kistler SS. Coherent expanded aerogels and jellies. Nature. 1931;127:741.

    CAS  Google Scholar 

  5. Lee H, Lee D, Cho J, Kim YO, Lim S, Youn S, Jung YC, Kim SY, Seong DG. Super-insulating, flame-retardant, and flexible poly(dimethylsiloxane) composites based on silica aerogel. Compos Part A Appl Sci Manuf. 2019;123:108–13.

    CAS  Google Scholar 

  6. Lu Y, Li X, Yin X, Utomo HD, Tao NF, Huang H. Silica aerogel as super thermal and acoustic insulation materials. J Environ Prot (Irvine Calif). 2018;9:295–308.

    CAS  Google Scholar 

  7. Cuce E, Cuce PM, Wood CJ, Riffat SB. Toward aerogel based thermal superinsulation in buildings: a comprehensive review. Renew Sustain Energy Rev. 2014;34:273–99.

    CAS  Google Scholar 

  8. Hüsing N, Schubert U. Aerogels- airy materials: chemistry, structure, and properties. Angew Chem Int Ed. 2010;37:22–45.

    Google Scholar 

  9. Maleki H, Durães L, Portugal A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies. J Non-Cryst Solids. 2014;385:55–74.

    CAS  Google Scholar 

  10. Ziegler C, Wolf A, Eacute, Liu W, Herrmann AK, Gaponik N, Eychmüller A. Modern inorganic aerogels. Angew Chem Int Ed Engl. 2017;56:13200–21.

    CAS  Google Scholar 

  11. Zu G, Kanamori K, Maeno A, Kaji H, Nakanishi K. Superflexible multifunctional polyvinylpolydimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors. Angew Chem Int Ed Engl. 2018;57:9722–7.

    CAS  Google Scholar 

  12. Zu G, Shimizu T, Kanamori K, Zhu Y, Maeno A, Kaji H, Shen J, Nakanishi K. Transparent, superflexible doubly cross-linked polyvinylpolymethylsiloxane aerogel superinsulators via ambient pressure drying. ACS Nano. 2018;12:521–32.

    CAS  Google Scholar 

  13. Leventis N, Sotiriou-Leventis C, Zhang G, Rawashdeh AMM. Nanoengineering strong silica aerogels. Nano Lett. 2002;2:957–60.

    CAS  Google Scholar 

  14. Zhang G, Dass A, Rawashdeh AMM, Thomas J, Counsil JA, Sotiriou-Leventis C, Fabrizio EF, Ilhan F, Vassilaras P, Scheiman DA, McCorkle L, Palczer A, Johnston JC, Meador MA, Leventis N. Isocyanate-crosslinked silica aerogel monoliths: preparation and characterization. J Non-Cryst Solids. 2004;350:152–64.

    CAS  Google Scholar 

  15. Leventis N. Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater. 2015;17:1085–98.

    Google Scholar 

  16. Li L, Yalcin B, Nguyen BN, Meador MA, Cakmak M. Flexible nanofiber-reinforced aerogel (xerogel) synthesis, manufacture, and characterization. ACS Appl Mater Inter. 2009;1:2491–501.

    CAS  Google Scholar 

  17. Xu LZ, Zhao XL, Xu CL, Kotov NA. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv Mater. 2018;30:1703343.

    Google Scholar 

  18. Liu GD, Ghosh R, Vaziri A, Hossieni A, Mousanezhad D, Nayeb-Hashemi H. Biomimetic composites inspired by venous leaf. J Compos Mater. 2018;52:361–72.

    Google Scholar 

  19. Chen SM, Gao HL, Zhu YB, Yao HB, Mao LB, Song YQ, Xia J, Pan Z, He Z, Wu HA, Yu SH. Biomimetic twisted plywood structural materials. Natl Sci Rev. 2018;5:703–14.

    CAS  Google Scholar 

  20. Mi HY, Jing X, Huang HX, Turng LS. Instantaneous self-assembly of three-dimensional silica fibers in electrospinning: Insights into fiber deposition behavior. Mater Lett. 2017;204:45–8.

    CAS  Google Scholar 

  21. Sun B, Long YZ, Zhang HD, Li MM, Duvail JL, Jiang XY, Yin HL. Advances in three-dimensional nanofibrous macrostructures via electrospinning. Prog Polym Sci. 2014;39:862–90.

    CAS  Google Scholar 

  22. Mi HY, Jing X, Napiwocki BN, Li ZT, Turng LS, Huang HX. Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for three-dimensional tissue regeneration. Chem Eng J. 2018;331:652–62.

    CAS  Google Scholar 

  23. Wang H, Zhang X, Wang N, Li Y, Feng X, Huang Y, Zhao C, Liu Z, Fang M, Ou G, Gao H, Li X, Wu H. Ultralight, scalable, and high-temperature–resilient ceramic nanofiber sponges. Sci Adv. 2017;3:1603170.

    Google Scholar 

  24. Alcock B, Peijs T. Technology and development of self-reinforced polymer composites. Berlin: Springer Berlin Heidelberg; 2013.

    Google Scholar 

  25. Capiati NJ, Porter RS. The concept of one polymer composites modelled with high density polyethylene. J Mater Sci. 1975;10:1671–7.

    CAS  Google Scholar 

  26. Yu F, White KW. Relationship between microstructure and mechanical performance of a 70% silicon nitride–30% barium aluminum silicate self in reinforced ceramic composite. J Am Ceram Soc. 2001;84:5–12.

    CAS  Google Scholar 

  27. Li J, Nawaz H, Wu J, Zhang J, Wan J, Mi Q, Yu J, Zhang J. All-cellulose composites based on the self-reinforced effect. Compos Commun. 2018;9:42–53.

    CAS  Google Scholar 

  28. Pyzik AJ, Beaman DR. Microstructure and properties of self-reinforced silicon nitride. J Am Ceram Soc. 1993;76:2737–44.

    CAS  Google Scholar 

  29. Tang X, Sun A, Chu C, Yu M, Ma S, Cheng Y, Guo J, Xu G. A novel silica nanowire-silica composite aerogels dried at ambient pressure. Mater Des. 2017;115:415–21.

    CAS  Google Scholar 

  30. Shao Z, He X, Niu Z, Huang T, Cheng X, Zhang Y. Ambient pressure dried shape-controllable sodium silicate based composite silica aerogel monoliths. Mater Chem Phys. 2015;162:346–53.

    CAS  Google Scholar 

  31. Qiu L, Liu JZ, Chang SL, Wu Y, Li D. Biomimetic superelastic graphene-based cellular monoliths. Nat Commun. 2012;3:1241.

    Google Scholar 

  32. Wang L, Wang J, Zheng L, Li Z, Wu L, Wang X. Superelastic, anticorrosive, and flame-resistant nitrogen-containing resorcinol formaldehyde/graphene oxide composite aerogels. ACS Sustain Chem Eng. 2019;7:10873–9.

    CAS  Google Scholar 

  33. Ren RP, Wang Z, Ren J, Lv KY. Highly compressible polyimide/graphene aerogel for efficient oil/water separation. J Mater Sci. 2018;54:5918–26.

    Google Scholar 

  34. Zhang X, Liu M, Wang H, Yan N, Cai Z, Yu Y. Ultralight, hydrophobic, anisotropic bamboo-derived cellulose nanofibrils aerogels with excellent shape recovery via freeze-casting. Carbohydr Polym. 2019;208:232–40.

    CAS  Google Scholar 

  35. Sun H, Xu Z, Gao C. Multifunctional. Ultra-flyweight, synergistically assembled carbon aerogels. Adv Mater. 2013;25:2554–60.

    CAS  Google Scholar 

  36. Schaedler TA, Jacobsen AJ, Torrents A, Sorensen AE, Lian J, Greer JR, Valdevit L, Carter WB. Ultralight metallic microlattices. Science. 2011;334:962.

    CAS  Google Scholar 

  37. Hu Y, Zhuo H, Luo Q, Wu Y, Wen R, Chen Z, Liu L, Zhong L, Peng X, Sun R. Biomass polymer-assisted fabrication of aerogels from MXenes with ultrahigh compression elasticity and pressure sensitivity. J Mater Chem A. 2019;7:10273–81.

    CAS  Google Scholar 

  38. Gibson LJ, Ashby MF. Cellular solids: structure and properties. 2nd ed. Cambridge: Cambridge University Press; 1997.

    Google Scholar 

  39. Wong JCH, Kaymak H, Brunner S, Koebel MM. Mechanical properties of monolithic silica aerogels made from polyethoxydisiloxanes. Micropor Mesopor Mater. 2014;183:23–9.

    CAS  Google Scholar 

  40. Yu ZL, Yang N, Apostolopoulou-Kalkavoura V, Qin B, Ma ZY, Xing WY, Qiao C, Bergstrom L, Antonietti M, Yu SH. Fire-rtardant and thermally insulating phenolic-silica aerogels. Angew Chem Int Ed Engl. 2018;57:4538–42.

    CAS  Google Scholar 

  41. Lee OJ, Lee KH, Yim TJ, Kim YS, Yoo KP. Determination of mesopore size of aerogels from thermal conductivity measurements. J Non-Cryst Solids. 2002;298:287–92.

    CAS  Google Scholar 

  42. Hrubesh LW, Pekala RW. Thermal properties of organic and inorganic aerogels. J Mater Res. 1994;9:731–8.

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the joint financial support provided by the National Natural Science Foundation of China (No. 51703024), “Chenguang Program” supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (18CG37), the Fundamental Research Funds for the Central Universities (No. 2232018D3-18), and the Program of Shanghai Academic Research Leader (18XD1400100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yu.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 3856 kb)

Supplementary Material 2 (MP4 2602 kb)

Supplementary Material (MP4 8483 kb)

Supplementary Material 2 (AVI 3519 kb)

Supplementary Material 5 (MP4 3643 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, T., Zhu, Y., Zhu, J. et al. Self-reinforcement of Light, Temperature-Resistant Silica Nanofibrous Aerogels with Tunable Mechanical Properties. Adv. Fiber Mater. 2, 338–347 (2020). https://doi.org/10.1007/s42765-020-00054-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42765-020-00054-8

Keywords

Navigation