Skip to main content
Log in

Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Silicon (Si) can mitigate the deleterious impacts of various types of stresses on field crops. However, the potential of nano-silicon (nano-Si) in improving water stress and the relevant mechanisms remain unclear. Therefore, here, we examined the combined impacts of nano-Si and various irrigation regimes on antioxidant systems, osmolytes, photosynthesis-related parameters, and growth of sugar beet in a field trial. Treatments included three supplemental irrigation rates (I1, I2, and I3) arranged based on the crop evapotranspiration (100% ETC, 75% ETC, and 50% ETC) and three doses of nano-Si: 0, 1, and 2 mM. Irrigation regime treatments were performed at the six-to eight-leaf stage (49 days after sowing), which continued until the harvest (180 days after sowing). Water stress brought about a detrimental impact on the sugar beet growth, the relative water content of leaves (LRWC), leaf area index (LAI), and photosynthetic performance. In contrast, Water deficiency enhanced hydrogen peroxide (H2O2) and malondialdehyde (MDA) contents, which were followed by increasing antioxidant activities and osmolytes. Supplementation of nano-Si at low dose (1 mM) significantly increased chlorophyll contents, net photosynthesis (PN), glycine betaine (GB), flavonols (quercetin and rutin), and enzymatic antioxidants (superoxide dismutase, catalase, and guaiacol peroxidase). Furthermore, nano-Si at low dose (1 mM) decreased the amount of H2O2 and MDA. Instead, the higher dose (2 mM) of nano-Si exerted toxic effects on severe water-stressed (50% ETC) plants. The parallel increase in MDA and proline contents in sugar beet plants treated with two mM nano-Si along with severe water stress supports the view that proline augmentation presumably is a sign of stress injury instead of stress resistance. Overall, our results imply that nano-Si can play a protecting role in sugar beet plants during water stress by enhancing antioxidants, GB, and flavonols (quercetin and rutin). However, the concentration of nano-Si must be chosen with care.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Si:

Silicon

Nano-Si:

Nano-silicon

LAI:

Leaf area index

MDA:

Malondialdehyde

SOD:

Superoxide dismutase

H2O2 :

Hydrogen peroxide

GPX:

Guaiacol peroxidase

CAT:

Catalase

PN :

Net photosynthesis

LRWC:

Relative water content of leaves

T :

Transpiration

g s :

Stomatal conductance

References

  • Abbas T, Balal RM, Shahid MA, Pervez MA, Ayyub CM, Aqueel MA, Javaid MM (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37(2):6

    Google Scholar 

  • Abdel-Haliem MEF, Hegazy HS, Hassan NS, Naguib DM (2017) Effect of silica ions and nano silica on rice plants under salinity stress. Ecol Eng 99:282–289

    Google Scholar 

  • Aebi H (1984) [13] Catalase in vitro. Methods Enzymol 105:121–126. https://doi.org/10.1016/S0076-6879(84)05016-3

    Article  CAS  PubMed  Google Scholar 

  • Agami RA, Alamri SA, Abd El-Mageed TA, Abousekken MSM, Hashem M (2018) Role of exogenous nitrogen supply in alleviating the deficit irrigation stress in wheat plants. Agric Water Manag 210:261–270

    Google Scholar 

  • Agati G, Matteini P, Goti A, Tattini M (2007) Chloroplast-located flavonoids can scavenge singlet oxygen. New Phytol 174(1):77–89

    CAS  PubMed  Google Scholar 

  • Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evapotranspiration-guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. FAO Rome 300(9):D05109

    Google Scholar 

  • Amer M, El-Emary FA (2018) Impact of foliar with Nano-silica in mitigation of salt stress on some soil properties, crop-water productivity and anatomical structure of maize and faba bean. Environ Biodiver Soil Sec 2(2018):25–38

    Google Scholar 

  • Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS (2019) Application of Nano-silicon dioxide improves salt stress tolerance in strawberry plants. Agronomy 9(5):246

    CAS  Google Scholar 

  • Bandurska H, Niedziela J, Pietrowska-Borek M, Nuc K, Chadzinikolau T, Radzikowska D (2017) Regulation of proline biosynthesis and resistance to drought stress in two barley (Hordeum vulgare L.) genotypes of different origin. Plant Physiol Biochem 118:427–437

    CAS  PubMed  Google Scholar 

  • Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205–207. https://doi.org/10.1007/BF00018060

    Article  CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287. https://doi.org/10.1016/0003-2697(71)90370-8

    Article  CAS  Google Scholar 

  • Ben Rejeb K, Lefebvre-De Vos D, Le Disquet I, Leprince AS, Bordenave M, Maldiney R, Jdey A, Abdelly C, Savouré A (2015) Hydrogen peroxide produced by NADPH oxidases increases proline accumulation during salt or mannitol stress in Arabidopsis thaliana. New Phytol 208(4):1138–1148

    CAS  PubMed  Google Scholar 

  • Bettaieb I, Hamrouni-Sellami I, Bourgou S, Limam F, Marzouk B (2011) Drought effects on polyphenol composition and antioxidant activities in aerial parts of Salvia officinalis L. Acta Physiol Plant 33(4):1103–1111

    CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1–2):248–254

    CAS  PubMed  Google Scholar 

  • Choluj D, Karwowska R, Jasinska M, Haber G (2004) Growth and dry matter partitioning in sugar beet plants (Beta vulgaris L.) under moderate drought. Plant Soil Environ 50(6):265–272

    Google Scholar 

  • Chołuj D, Wiśniewska A, Szafrański KM, Cebula J, Gozdowski D, Podlaski S (2014) Assessment of the physiological responses to drought in different sugar beet genotypes in connection with their genetic distance. J Plant Physiol 171(14):1221–1230

    PubMed  Google Scholar 

  • Das P, Manna I, Biswas AK, Bandyopadhyay M (2018) Exogenous silicon alters ascorbate-glutathione cycle in two salt-stressed indica rice cultivars (MTU 1010 and Nonabokra). Environ Sci Pollut Res 25(26):26625–26642

    CAS  Google Scholar 

  • Das P, Manna I, Sil P, Bandyopadhyay M, Biswas AK (2019) Exogenous silicon alters organic acid production and enzymatic activity of TCA cycle in two NaCl stressed indica rice cultivars. Plant Physiol Biochem 136:76–91

    CAS  PubMed  Google Scholar 

  • De Abreu I, Mazzafera P (2005) Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy. Plant Physiol Biochem 43:241–248. https://doi.org/10.1016/j.plaphy.2005.01.020

    Article  CAS  Google Scholar 

  • Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91(1):11–17

    CAS  PubMed  Google Scholar 

  • Faisal M, Saquib Q, Alatar AA, Al-Khedhairy AA, Hegazy AK, Musarrat J (2013) Phytotoxic hazards of NiO-nanoparticles in tomato: a study on mechanism of cell death. J Hazard Mater 250–251:318–332. https://doi.org/10.1016/j.jhazmat.2013.01.063

    Article  CAS  PubMed  Google Scholar 

  • Farooq MA, Saqib ZA, Akhtar J, Bakhat HF, Pasala R-K, Dietz K-J (2015) Protective role of silicon (Si) against combined stress of salinity and boron (B) toxicity by improving antioxidant enzymes activity in rice. Silicon 11:2193–2197

    Google Scholar 

  • Farouk S, EL-Metwally IM (2019) Synergistic responses of drip-irrigated wheat crop to chitosan and/or silicon under different irrigation regimes. Agric Water Manag 226:105807

    Google Scholar 

  • Fini A, Guidi L, Ferrini F, Brunetti C, Di Ferdinando M, Biricolti S, Pollastri S, Calamai L, Tattini M (2012) Drought stress has contrasting effects on antioxidant enzymes activity and phenylpropanoid biosynthesis in Fraxinus ornus leaves: an excess light stress affair? J Plant Physiol 169:929–939. https://doi.org/10.1016/j.jplph.2012.02.014

    Article  CAS  PubMed  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    CAS  Google Scholar 

  • Grieve CM, Grattan SR (1983) Rapid assay for determination of water soluble quaternary ammonium compounds. Plant Soil 70:303–307. https://doi.org/10.1007/BF02374789

    Article  CAS  Google Scholar 

  • Hajiboland R, Moradtalab N, Eshaghi Z, Feizy J (2018) Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. NZ J Crop Horticult Sci 46(2):144–161

    Google Scholar 

  • Hayat S, Hayat Q, Alyemeni MN, Wani AS, Pichtel J, Ahmad A (2012) Role of proline under changing environments: a review. Plant Signal Behav 7(11):1456–1466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    CAS  PubMed  Google Scholar 

  • Hussein MM, Kassab OM, Ellil AA (2008) Evaluating water stress influence on growth and photosynthetic pigments of two sugar beet varieties. Res J Agricult Biol Sci 4(6):936–941

    CAS  Google Scholar 

  • James LG (1988) Principles of farm irrigation systems design. Wiley, Chichester, UK

    Google Scholar 

  • Keinänen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC screening of jasmonate-induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuata. J Agric Food Chem 49:3553–3558. https://doi.org/10.1021/jf010200+

    Article  CAS  PubMed  Google Scholar 

  • Kono Y, Fridovich I (1982) Superoxide radical inhibits catalase. J Biol Chem 257(10):5751–5754

    CAS  PubMed  Google Scholar 

  • Lawlor DW (2002) Limitation to Photosynthesis in Water-stressed Leaves: Stomata vs. Metabolism and the Role of ATP. Ann Botany 89(7):871–885

    CAS  Google Scholar 

  • Lee B-R, Kim K-Y, Jung W-J, Avice J-C, Ourry A, Kim T-H (2007) Peroxidases and lignification in relation to the intensity of water-deficit stress in white clover (Trifolium repens L.). J Exp Bot 58(6):1271–1279

    CAS  PubMed  Google Scholar 

  • Lee T-M, Lin Y-H (1995) Changes in soluble and cell wall-bound peroxidase activities with growth in anoxia-treated rice (Oryza sativa L.) coleoptiles and roots. Plant Sci 106(1):1–7

    CAS  Google Scholar 

  • Liang Y, Chen QIN, Liu Q, Zhang W, Ding R (2003) Exogenous silicon (Si) increases antioxidant enzyme activity and reduces lipid peroxidation in roots of salt-stressed barley (Hordeum vulgare L.). J Plant Physiol 160(10):1157–1164

    CAS  PubMed  Google Scholar 

  • Liu C, Li F, Luo C, Liu X, Wang S, Liu T, Li X (2009) Foliar application of two silica sols reduced cadmium accumulation in rice grains. J Hazard Mater 161(2–3):1466–1472. https://doi.org/10.1016/j.jhazmat.2008.04.116

    Article  CAS  PubMed  Google Scholar 

  • Lv BS, Ma HY, Li XW, Wei LX, Lv HY, Yang HY, Jiang CJ, Liang ZW (2015) Proline accumulation is not correlated with saline-alkaline stress tolerance in rice seedlings. Agron J 107(1):51–60

    Google Scholar 

  • Mohammadian R, Moghaddam M, Rahimian H, Sadeghian SY (2005) Effect of early season drought stress on growth characteristics of sugar beet genotypes. Turkish J Agricult Forest 29(5):357–368

    Google Scholar 

  • Nonami H, Wu Y, Boyer JS (1997) Decreased growth-induced water potential (a primary cause of growth inhibition at low water potentials). Plant Physiol 114(2):501–509

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parveen A, Liu W, Hussain S, Asghar J, Perveen S, Xiong Y (2019) Silicon priming regulates morpho-physiological growth and oxidative metabolism in maize under drought stress. Plants 8(10):431

    CAS  PubMed Central  Google Scholar 

  • Pinelo M, Rubilar M, Sineiro J, Núñez MJ (2004) Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem 85:267–273. https://doi.org/10.1016/j.foodchem.2003.06.020

    Article  CAS  Google Scholar 

  • Rastogi A, Tripathi DK, Yadav S, Chauhan DK, Živčák M, Ghorbanpour M, El-Sheery NI, Brestic M (2019) Application of silicon nanoparticles in agriculture. 3 Biotech 9(3):90

    PubMed  PubMed Central  Google Scholar 

  • Riazi A, Matsuda K, Arslan A (1985) Water-stress induced changes in concentrations of proline and other solutes in growing regions of young barley leaves. J Exp Bot 36(11):1716–1725

    CAS  Google Scholar 

  • Rizwan M, Ali S, Qayyum MF, Ok YS, Adrees M, Ibrahim M, Zia-ur-Rehman M, Farid M, Abbas F (2017) Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: a critical review. J Hazard Mater 322:2–16

    CAS  PubMed  Google Scholar 

  • Romano A, Sorgonà A, Lupini A, Araniti F, Stevanato P, Cacco G, Abenavoli MR (2013) Morpho-physiological responses of sugar beet (Beta vulgaris L.) genotypes to drought stress. Acta Physiol Plant 35:853–865. https://doi.org/10.1007/s11738-012-1129-1

    Article  CAS  Google Scholar 

  • Roozitalab MH, Siadat H, Farshad A (eds) (2018) The soils of Iran. Springer, Switzerland

    Google Scholar 

  • Sattar A, Cheema MA, Sher A, Ijaz M, Ul-Allah S, Nawaz A, Abbas T, Ali Q (2019) Physiological and biochemical attributes of bread wheat (Triticum aestivum L.) seedlings are influenced by foliar application of silicon and selenium under water deficit. Acta Physiol Plant 41(8):146

    Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167(15):1248–1252

    CAS  PubMed  Google Scholar 

  • Sil P, Das P, Biswas AK (2018) Silicon induced mitigation of TCA cycle and GABA synthesis in arsenic stressed wheat (Triticum aestivum L.) seedlings. South Af J Bot 119:340–352

    CAS  Google Scholar 

  • Sil P, Das P, Biswas AK (2019) Impact of exogenous silicate amendments on nitrogen metabolism in wheat seedlings subjected to arsenate stress. Silicon 12:535–545

    Google Scholar 

  • Slinkard K, Singleton VL (1977) Total phenol analysis: automation and comparison with manual methods. Am J Enol Vitic 28(1):49–55

    CAS  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A, Azenha M, Cunha A, Pereira R, Fidalgo F (2018a) SiO2 nanomaterial as a tool to improve Hordeum vulgare L. tolerance to nano-NiO stress. Sci Total Environ 622:517–525

    PubMed  Google Scholar 

  • Soares C, Branco-Neves S, de Sousa A, Teixeira J, Pereira R, Fidalgo F (2018b) Can nano-SiO2 reduce the phytotoxicity of acetaminophen?–A physiological, biochemical and molecular approach. Environ Pollut 241:900–911

    CAS  PubMed  Google Scholar 

  • Soares C, Carvalho ME, Azevedo RA, Fidalgo F (2019) Plants facing oxidative challenges—A little help from the antioxidant networks. Environ Exp Bot 161:4–25

    CAS  Google Scholar 

  • Tattini M, Galardi C, Pinelli P, Massai R, Remorini D, Agati G (2004) Differential accumulation of flavonoids and hydroxycinnamates in leaves of Ligustrum vulgare under excess light and drought stress. New Phytol 163(3):547–561

    CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh VP, Prasad SM, Dubey NK, Chauhan DK (2017) Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiol Biochem 110:70–81. https://doi.org/10.1016/j.plaphy.2016.06.026

    Article  CAS  PubMed  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants protective role of exogenous polyamines. Plant Sci 151:59–66. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  • Wang S, Wang F, Gao S (2015) Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environ Sci Pollut Res 22(4):2837–2845. https://doi.org/10.1007/s11356-014-3525-0

    Article  CAS  Google Scholar 

  • Xie Y, Li B, Tao G, Zhang Q, Zhang C (2012) Effects of nano-silicon dioxide on photosynthetic fluorescence characteristics of Indocalamus barbatus McClure. J Nanjing For Univ (Nat Sci Ed) 36(2):59–63

    CAS  Google Scholar 

  • Yamasaki S, Dillenburg LR (1999) Measurements of leaf relative water content in Araucaria angustifolia. Rev Br Fisiol Veg 11(2):69–75

    Google Scholar 

  • Yang R, Howe JA, Golden BR (2018) Calcium silicate slag reduces drought stress in rice (Oryza sativa L.). J Agron Crop Sci 205(4):353–361

    Google Scholar 

  • Yildiz-Aktas L, Dagnon S, Gurel A, Gesheva E, Edreva A (2009) Drought tolerance in cotton: involvement of non-enzymatic ROS-scavenging compounds. J Agron Crop Sci 195(4):247–253

    CAS  Google Scholar 

  • Yin L, Wang S, Li J, Tanaka K, Oka M (2013) Application of silicon improves salt tolerance through ameliorating osmotic and ionic stresses in the seedling of Sorghum bicolor. Acta Physiol Plant 35(11):3099–3107

    CAS  Google Scholar 

  • Yin L, Wang S, Liu P, Wang W, Cao D, Deng X, Zhang S (2014) Silicon-mediated changes in polyamine and 1-aminocyclopropane-1-carboxylic acid are involved in silicon-induced drought resistance in Sorghum bicolor L. Plant Physiol Biochem 80:268–277

    CAS  PubMed  Google Scholar 

  • Zhang W, Yu X, Li M, Lang D, Zhang X, Xie Z (2018) Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Protection 107:1–11

    Google Scholar 

Download references

Acknowledgements

The authors thank the Faculty of Agriculture, Tarbiat Modares University, Grant number 1, Tehran, Iran for its financial support. We acknowledge the Sugar Beet Seed Institute (SBSI, Karaj, Iran) for the organization of field trials and the donation of fertilizers and seeds. The authors would like to gratefully appreciate Dr. Shahram Namjoyan, Babak Babaei, Hamid Noshad, and Dr. Samar Khayamim for their excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Sorooshzadeh.

Additional information

Communicated by R. Aroca.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Namjoyan, S., Sorooshzadeh, A., Rajabi, A. et al. Nano-silicon protects sugar beet plants against water deficit stress by improving the antioxidant systems and compatible solutes. Acta Physiol Plant 42, 157 (2020). https://doi.org/10.1007/s11738-020-03137-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03137-6

Keywords

Navigation