Skip to main content
Log in

Modeling of ionospheric characteristics based on canonical correlation analysis at Bangalore for the year 2017

  • Original Study
  • Published:
Acta Geodaetica et Geophysica Aims and scope Submit manuscript

Abstract

Ionospheric peak electron density (NmF2) and total electron content (TEC) are the essential measures of ionospheric variability for modeling their effects on navigation and communication system applications. The global and regional models have their limitations in predicting ionospheric variations at the low latitude Indian region, mainly due to the anomalous electron density gradients and equatorial ionization anomaly (EIA) effects. In this paper, ionospheric TEC characteristics are modeled based on canonical correlation analysis (CCA) with Global Positioning System (GPS)-TEC observations and NmF2 values at a northern low latitude station Bangalore (13.02° N and 77.57° E) during the 2017 period. The decomposed CCA modes consist of CCA patterns and their corresponding amplitudes. The short-term variations (diurnal) are reproduced by the CCA patterns, whereas the long-term variations (yearly) are reproduced by their corresponding amplitudes. The first three CCA modes represent the ionospheric features such as diurnal, sunrise and sunset enhancements, semiannual, annual, and solar-cycle variations. Further, the temporal structures of NmF2 are effectively replicated by the CCA model. NmF2 (CCA) showed relatively higher linearity (0.99) and lower RMSE (0.31 TECU), whereas NmF2 (IRI2016) showed lower linearity (0.92) and higher RMSE (1.45 TECU) with the measured-NmF2 values. Hence, the CCA approach could be an effective method for characterizing the NmF2 variations over the low latitude region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Amerian Y, Hossainali MM, Voosoghi B (2013a) Regional improvement of IRI extracted ionospheric electron density by compactly supported base functions using GPS observations. J Atmos Sol Terr Phys 92:23–30

    Article  Google Scholar 

  • Amerian Y, Voosoghi B, Hossainali MM (2013b) Regional ionosphere modeling in support of IRI and wavelet using GPS observations. Acta Geophys 61:1246–1261

    Article  Google Scholar 

  • Ansari K, Park K-D, Panda SK (2019) Empirical orthogonal function analysis and modeling of ionospheric TEC over South Korean region. Acta Astronaut 161:313–324. https://doi.org/10.1016/j.actaastro.2019.05.044

    Article  Google Scholar 

  • Ansari K, Panda SK, Jamjareegulgarn P (2020) Singular spectrum analysis of GPS derived ionospheric TEC variations over Nepal during the low solar activity period. Acta Astronaut 169:216–223

    Article  Google Scholar 

  • Bilitza D, Altadill D, Truhlik V, Shubin V, Galkin I, Reinisch B, Huang X (2017) International reference ionosphere 2016. From ionospheric climate to real-time weather predictions. Space Weather 15:418–429

    Article  Google Scholar 

  • Cander LR (2019) Ionospheric space weather. Springer, Berlin

    Book  Google Scholar 

  • Dabbakuti JRKK, Ch B (2019) Ionospheric monitoring system based on the Internet of Things with ThingSpeak. Astrophys Space Sci 364:137

    Article  Google Scholar 

  • Dabbakuti JK, Ratnam DV (2016) Characterization of ionospheric variability in TEC using EOF and wavelets over low-latitude GNSS stations. Adv Space Res 57:2427–2443

    Article  Google Scholar 

  • Dabbakuti JK, Ratnam DV (2017) Modeling and analysis of GPS-TEC low latitude climatology during the 24th solar cycle using empirical orthogonal functions. Adv Space Res 60:1751–1764

    Article  Google Scholar 

  • Dabbakuti JK, Mallika Y, Rao MV, Rao KR, Ratnam DV (2019) Modeling of GPS-TEC using QR-decomposition over the low latitude sector during disturbed geomagnetic conditions. Adv Space Res 64:2088–2103

    Article  Google Scholar 

  • Dashora N, Suresh S (2015) Characteristics of low-latitude TEC during solar cycles 23 and 24 using global ionospheric maps (GIMs) over Indian sector. J Geophys Res Space Phys 120:5176–5193

    Article  Google Scholar 

  • Goodman JM (1992) HF communication: science & technology. Van Nostrand Reinhold Company, New York

    Google Scholar 

  • Gopi S (2010) Rinex GPS-TEC program, version 1.45. Boston College, Newton

    Google Scholar 

  • Gulyaeva T (1997) TEC residual slab-thickness between bottomside and topside ionosphere. Acta Geod Geophys Hung 32:355–363

    Google Scholar 

  • Gulyaeva T (2003) International standard model of the Earth’s inosphere and plasmasphere. Astron Astrophys Trans 22:639–643

    Google Scholar 

  • Hotelling H (1992) Relations between two sets of variates. Breakthroughs in statistics. Springer, Berlin, pp 162–190

    Google Scholar 

  • Houminer Z, Soicher H (1996) Improved short-term predictions of ƒ0F2 using GPS time delay measurements. Radio Sci 31:1099–1108

    Article  Google Scholar 

  • Jamjareegulgarn P, Ansari K, Ameer A (2020) Empirical orthogonal function modelling of total electron content over Nepal and comparison with global ionospheric models. Acta Astronaut 177:497–507. https://doi.org/10.1016/j.actaastro.2020.07.038

    Article  Google Scholar 

  • Kaplan ED, Hegarty C (2017) Understanding GPS/GNSS: principles and applications. Artech House, Norwood

    Google Scholar 

  • Karanam S, Ratnam DV, Dabbakuti JK (2019) Ionospheric time delay corrections based on the extended single layer model over low latitude region. Geod Geodyn 10:235–240

    Article  Google Scholar 

  • Li S, Li L, Peng J (2016) Variability of ionospheric TEC and the performance of the IRI-2012 model at the BJFS station. China Acta Geophys 64:1970–1987

    Article  Google Scholar 

  • Liu L, Wan W, Zhang ML, Zhao B, Ning B (2008) Prestorm enhancements in NmF2 and total electron content at low latitudes. J Geophys Res Space Phys 113:A02311

  • Neeli R, Dabbakuti JK, Chowdhary VR, Tripathi NK, Devanaboyina VR (2018) Modeling of local ionospheric time varying characteristics based on singular value decomposition over low-latitude GPS stations. Astrophys Space Sci 363:182

    Article  Google Scholar 

  • Ratnam DV, Dabbakuti JK, Sunda S (2017) Modeling of ionospheric time delays based on a multishell spherical harmonics function approach. IEEE J Sel Top Appl Earth Obs Remote Sens 10:5784–5790

    Article  Google Scholar 

  • Ratnam DV, Dabbakuti JK, Lakshmi NS (2018) Improvement of Indian-regional Klobuchar ionospheric model parameters for single-frequency GNSS users. IEEE Geosci Remote Sens Lett 15:971–975

    Article  Google Scholar 

  • Ratnam DV, Otsuka Y, Sivavaraprasad G, Dabbakuti JRKK (2019) Development of multivariate ionospheric TEC forecasting algorithm using linear time series model and ARMA over low-latitude GNSS station. Adv Space Res 63:2848–2856

    Article  Google Scholar 

  • Razin MRG, Voosoghi B (2016) Modeling of ionosphere time series using wavelet neural networks (case study: NW of Iran). Adv Space Res 58:74–83

    Article  Google Scholar 

  • Reddybattula KD, Panda SK (2019) Performance analysis of quiet and disturbed time ionospheric TEC responses from GPS-based observations, IGS-GIM, IRI-2016 and SPIM/IRI-Plas 2017 models over the low latitude Indian region. Adv Space Res 64:2026–2045

    Article  Google Scholar 

  • Singh S, Rathore V, Singh AK, Singh A (2017) Ionospheric irregularities at low latitude using VHF scintillations during extreme low solar activity period (2008–2010). Acta Geod Geophys 52:35–51

    Article  Google Scholar 

  • Soicher H, Houminer Z (1998) Determination of f 0 F2 short-term variations from GPS time delay observations. Acta Geod Geophys Hung 33:111–119

    Google Scholar 

  • Sridhar K, Sridhar M, Raghunath S, Ratnam DV (2020) Ionospheric anomaly detection and Indian ionospheric climatology from GAGAN receivers. Acta Geod Geophys. https://doi.org/10.1007/s40328-020-00290-9

    Article  Google Scholar 

  • Suraj PS, Dabbakuti JK, Chowdhary VR, Tripathi NK, Ratnam DV (2017) Linear time series modeling of GPS-derived TEC observations over the Indo-Thailand region. J Geod 92:863–872

    Article  Google Scholar 

  • Venkatesh K, Rama Rao P, Prasad D, Niranjan K, Saranya P (2011) Study of TEC, slab-thickness and neutral temperature of the thermosphere in the Indian low latitude sector. Ann. Geophys. 29:1635–1645

    Article  Google Scholar 

  • Von Storch H, Zwiers FW (2001) Statistical analysis in climate research. Cambridge University Press, Cambridge

    Google Scholar 

  • Wan W, Liu L, Ning B (2008) Modeling the global ionospheric TEC with statistical eigen mode analysis. In: 37th COSPAR scientific assembly, p 3385

  • Wilks DS (2011) Statistical methods in the atmospheric sciences, vol 100. Academic Press, Cambridge

    Google Scholar 

  • Xue X-h, Wan W-x, Xiong J-g, Dou X-k (2008) The characteristics of the semi-diurnal tides in mesosphere/low-thermosphere (MLT) during 2002 at Wuhan (30.6° N, 114.4° E)—using canonical correlation analysis technique. Adv Space Res 41:1415–1422

    Article  Google Scholar 

  • Yu Y et al (2013) Modeling the global NmF2 from the GNSS-derived TEC-GIMs. Space Weather 11:272–283

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. K. Kumar Dabbakuti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyla, R.K., Dabbakuti, J.R.K.K., Mutchakayala, S.G.P. et al. Modeling of ionospheric characteristics based on canonical correlation analysis at Bangalore for the year 2017. Acta Geod Geophys 55, 579–592 (2020). https://doi.org/10.1007/s40328-020-00317-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40328-020-00317-1

Keywords

Navigation