Skip to main content

Advertisement

Log in

Functional interactions between complex I and complex II with nNOS in regulating cardiac mitochondrial activity in sham and hypertensive rat hearts

  • Muscle physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) affects mitochondrial activity through its interactions with complexes. Here, we investigated regulations of complex I (C-I) and complex II (C-II) by neuronal NO synthase (nNOS) in the presence of fatty acid supplementation and the impact on left ventricular (LV) mitochondrial activity from sham and angiotensin II (Ang-II)–induced hypertensive (HTN) rats. Our results showed that nNOS protein was expressed in sham and HTN LV mitochondrial enriched fraction. In sham, oxygen consumption rate (OCR) and intracellular ATP were increased by palmitic acid (PA) or palmitoyl-carnitine (PC). nNOS inhibitor, S-methyl-l-thiocitrulline (SMTC), did not affect OCR or cellular ATP increment by PA or PC. However, SMTC increased OCR with PA + malonate (a C-II inhibitor), but not with PA + rotenone (a C-I inhibitor), indicating that nNOS attenuates C-I with fatty acid supplementation. Indeed, SMTC increased C-I activity but not that of C-II. Conversely, nNOS-derived NO was increased by rotenone + PA in LV myocytes. In HTN, PC increased the activity of C-I but reduced that of C-II, consequently OCR was reduced. SMTC increased both C-I and C-II activities with PC, resulted in OCR enhancement in the mitochondria. Notably, SMTC increased OCR only with rotenone, suggesting that nNOS modulates C-II-mediated OCR in HTN. nNOS-derived NO was partially reduced by malonate + PA. Taken together, nNOS attenuates C-I-mediated mitochondrial OCR in the presence of fatty acid in sham and C-I modulates nNOS activity. In HTN, nNOS attenuates C-I and C-II activities whereas interactions between nNOS and C-II maintain mitochondrial activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arrell DK, Elliott ST, Kane LA, Guo YR, Ko YH, Pedersen PL, Robinson J, Murata M, Murphy AM, Marban E, Van Eyk JE (2006) Proteomic analysis of pharmacological preconditioning - novel protein targets converge to mitochondrial metabolism pathways. Circ Res 99:706–714. https://doi.org/10.1161/01.RES.0000243995.74395.f8

    Article  CAS  PubMed  Google Scholar 

  2. Beltran B, Quintero M, Garcia-Zaragoza E, O’Connor E, Esplugues JV, Moncada S (2002) Inhibition of mitochondrial respiration by endogenous nitric oxide: a critical step in Fas signaling. Proc Natl Acad Sci U S A 99:8892–8897. https://doi.org/10.1073/pnas.092259799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bendall JK, Damy T, Ratajczak P, Loyer X, Monceau V, Marty I, Milliez P, Robidel E, Marotte F, Samuel JL, Heymes C (2004) Role of myocardial neuronal nitric oxide synthase-derived nitric oxide in beta-adrenergic hyporesponsiveness after myocardial infarction-induced heart failure in rat. Circulation 110:2368–2375. https://doi.org/10.1161/01.Cir.0000145160.04084.Ac

    Article  CAS  PubMed  Google Scholar 

  4. Bernal-Mizrachi C, Gates AC, Weng S, Imamura T, Knutsen RH, DeSantis P, Coleman T, Townsend RR, Muglia LJ, Semenkovich CF (2005) Vascular respiratory uncoupling increases blood pressure and atherosclerosis. Nature 435:502–506. https://doi.org/10.1038/nature03527

    Article  CAS  PubMed  Google Scholar 

  5. Bombicino SS, Iglesias DE, Zaobornyj T, Boveris A, Valdez LB (2016) Mitochondrial nitric oxide production supported by reverse electron transfer. Arch Biochem Biophys 607:8–19. https://doi.org/10.1016/j.abb.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  6. Boveris A, Arnaiz SL, Bustamante J, Alvarez S, Valdez L, Boveris AD, Navarro A (2002) Pharmacological regulation of mitochondrial nitric oxide synthase. Methods Enzymol 359:328–339. https://doi.org/10.1016/s0076-6879(02)59196-5

    Article  CAS  PubMed  Google Scholar 

  7. Burkard N, Czolbe M, Williams T, Frantz S, Hofmann U, Ritter O (2010) Conditional overexpression of neuronal nitric oxide synthase is cardioprotective in ischemia-reperfusion. Circulation 122:1588–1603

    Article  CAS  Google Scholar 

  8. Davidson SM, Duchen MR (2006) Effects of NO on mitochondrial function in cardiomyocytes: pathophysiological relevance. Cardiovasc Res 71:10–21. https://doi.org/10.1016/j.cardiores.2006.01.019

    Article  CAS  PubMed  Google Scholar 

  9. Dawson D, Lygate CA, Zhang MH, Hulbert K, Neubauer S, Casadei B (2005) nNOS gene deletion exacerbates pathological left ventricular remodeling and functional deterioration after myocardial infarction. Circulation 112:3729–3737. https://doi.org/10.1161/Circulationaha.105.539437

    Article  CAS  PubMed  Google Scholar 

  10. Dikalov SI, Nazarewicz RR, Bikineyeva A, Hilenski L, Lassegue B, Griendling KK, Harrison DG, Dikalova AE (2014) Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid Redox Signal 20:281–294. https://doi.org/10.1089/ars.2012.4918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Doenst T, Nguyen TD, Abel ED (2013) Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res 113:709–724. https://doi.org/10.1161/CIRCRESAHA.113.300376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Douette P, Sluse FE (2006) Mitochondrial uncoupling proteins: new insights from functional and proteomic studies. Free Radical Bio Med 40:1097–1107. https://doi.org/10.1016/j.freeradbiomed.2005.12.010

    Article  CAS  Google Scholar 

  13. Genova ML, Lenaz G (2014) Functional role of mitochondrial respiratory supercomplexes. Biochim Biophys Acta 1837:427–443. https://doi.org/10.1016/j.bbabio.2013.11.002

    Article  CAS  PubMed  Google Scholar 

  14. Jang JH, Chun JN, Godo S, Wu G, Shimokawa H, Jin CZ, Jeon JH, Kim SJ, Jin ZH, Zhang YH (2015) ROS and endothelial nitric oxide synthase (eNOS)-dependent trafficking of angiotensin II type 2 receptor begets neuronal NOS in cardiac myocytes. Basic Res Cardiol 110:21. https://doi.org/10.1007/s00395-015-0477-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jin CZ, Jang JH, Wang Y, Kim JG, Bae YM, Shi J, Che CR, Kim SJ, Zhang YH (2012) Neuronal nitric oxide synthase is up-regulated by angiotensin II and attenuates NADPH oxidase activity and facilitates relaxation in murine left ventricular myocytes. J Mol Cell Cardiol 52:1274–1281. https://doi.org/10.1016/j.yjmcc.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  16. Jin CZ, Jang JH, Kim HJ, Wang Y, Hwang IC, Sadayappan S, Park BM, Kim SH, Jin ZH, Seo EY, Kim KH, Kim YJ, Kim SJ, Zhang YH (2013) Myofilament Ca2+ desensitization mediates positive lusitropic effect of neuronal nitric oxide synthase in left ventricular myocytes from murine hypertensive heart. J Mol Cell Cardiol 60:107–115. https://doi.org/10.1016/j.yjmcc.2013.04.017

    Article  CAS  PubMed  Google Scholar 

  17. Jin CL, Yin MZ, Paeng JC, Ha S, Lee JH, Jin P, Jin CZ, Zhao ZH, Wang Y, Kang KW, Leem CH, Park JW, Kim SJ, Zhang YH (2017) Neuronal nitric oxide synthase modulation of intracellular Ca(2+) handling overrides fatty acid potentiation of cardiac inotropy in hypertensive rats. Pflugers Arch 469:1359–1371. https://doi.org/10.1007/s00424-017-1991-1

    Article  CAS  PubMed  Google Scholar 

  18. Kanai AJ, Pearce LL, Clemens PR, Birder LA, VanBibber MM, Choi SY, de Groat WC, Peterson J (2001) Identification of a neuronal nitric oxide synthase in isolated cardiac mitochondria using electrochemical detection. Proc Natl Acad Sci U S A 98:14126–14131. https://doi.org/10.1073/pnas.241380298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258. https://doi.org/10.1152/physrev.00015.2009

    Article  CAS  PubMed  Google Scholar 

  20. Nemoto S, Takeda K, Yu ZX, Ferrans VJ, Finkel T (2000) Role for mitochondrial oxidants as regulators of cellular metabolism. Mol Cell Biol 20:7311–7318. https://doi.org/10.1128/Mcb.20.19.7311-7318.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Parihar MS, Nazarewicz RR, Kincaid E, Bringold U, Ghafourifar P (2008) Association of mitochondrial nitric oxide synthase activity with respiratory chain complex I. Biochem Biophys Res Commun 366:23–28. https://doi.org/10.1016/j.bbrc.2007.11.056

    Article  CAS  PubMed  Google Scholar 

  22. Poderoso JJ, Carreras MC, Lisdero C, Riobo N, Schopfer F, Boveris A (1996) Nitric oxide inhibits electron transfer and increases superoxide radical production in rat heart mitochondria and submitochondrial particles. Archives of Biochemistry and Biophysics 328:85–92. https://doi.org/10.1006/abbi.1996.0146

    Article  CAS  PubMed  Google Scholar 

  23. Schafer E, Seelert H, Reifschneider NH, Krause F, Dencher NA, Vonck J (2006) Architecture of active mammalian respiratory chain supercomplexes. J Biol Chem 281:15370–15375. https://doi.org/10.1074/jbc.M513525200

    Article  CAS  PubMed  Google Scholar 

  24. Scialo F, Fernandez-Ayala DJ, Sanz A (2017) Role of mitochondrial reverse electron transport in ROS signaling: potential roles in health and disease. Front Physiol 8:428. https://doi.org/10.3389/fphys.2017.00428

    Article  PubMed  PubMed Central  Google Scholar 

  25. Sears CE, Bryant SM, Ashley EA, Lygate CA, Rakovic S, Wallis HL, Neubauer S, Terrar DA, Casadei B (2003) Cardiac neuronal nitric oxide synthase isoform regulates myocardial contraction and calcium handling. Circ Res 92:E52–E59. https://doi.org/10.1161/01.Res.0000064585.95749.6d

    Article  CAS  PubMed  Google Scholar 

  26. Walker JE (1992) The NADH:ubiquinone oxidoreductase (complex I) of respiratory chains. Q Rev Biophys 25:253–324. https://doi.org/10.1017/s003358350000425x

    Article  CAS  PubMed  Google Scholar 

  27. Walker JE, Arizmendi JM, Dupuis A, Fearnley IM, Finel M, Medd SM, Pilkington SJ, Runswick MJ, Skehel JM (1992) Sequences of 20 subunits of NADH:ubiquinone oxidoreductase from bovine heart mitochondria. Application of a novel strategy for sequencing proteins using the polymerase chain reaction. J Mol Biol 226:1051–1072

    Article  CAS  Google Scholar 

  28. Weiss JN, Korge P, Honda HM, Ping PP (2003) Role of the mitochondrial permeability transition in myocardial disease. Circ Res 93:292–301. https://doi.org/10.1161/01.Res.0000087542.26971.D4

    Article  CAS  PubMed  Google Scholar 

  29. Wilson FH, Hariri A, Farhi A, Zhao HY, Petersen KF, Toka HR, Nelson-Williams C, Raja KM, Kashgarian CM, Shulman GI, Scheinman SJ, Lifton RP (2004) A cluster of metabolic defects caused by mutation in a mitochondrial tRNA. Science 306:1190–1194. https://doi.org/10.1126/science.1102521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zaobornyj T, Valdez LB, Iglesias DE, Gasco M, Gonzales GF, Boveris A (2009) Mitochondrial nitric oxide metabolism during rat heart adaptation to high altitude: effect of sildenafil, L-NAME, and L-arginine treatments. Am J Physiol Heart Circ Physiol 296:H1741–H1747. https://doi.org/10.1152/ajpheart.00422.2008

    Article  CAS  PubMed  Google Scholar 

  31. Zhang YH, Zhang MH, Sears CE, Emanuel K, Redwood C, El-Armouche A, Kranias EG, Casadei B (2008) Reduced phospholamban phosphorylation is associated with impaired relaxation in left ventricular myocytes from neuronal NO synthase-deficient mice. Circ Res 102:242–249. https://doi.org/10.1161/Circresaha.107.164798

    Article  CAS  PubMed  Google Scholar 

  32. Zorov DB, Juhaszova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (NRF-2019R1A2C1005720), National Natural Science Foundation of China (NSFC 31660284, NSFC31860288) and Seoul National University Research Grant 2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Hua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y.N., Sudarshan, V.K., Zhu, S.C. et al. Functional interactions between complex I and complex II with nNOS in regulating cardiac mitochondrial activity in sham and hypertensive rat hearts. Pflugers Arch - Eur J Physiol 472, 1743–1755 (2020). https://doi.org/10.1007/s00424-020-02458-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02458-2

Keywords

Navigation