Skip to main content
Log in

On the Drag Force of a Heavy Quark via 5d Kerr-AdS Background

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

We consider a heavy quark motion in a rotating quark-gluon plasma in the framework of the holographic prescription. For the gravity dual we use the 5d Kerr-AdS black hole with one non-zero rotational parameter. We calculate the Nambu-Goto action for a curved string in the Kerr-AdS background and corresponding conjugate momenta. For the case of one non-zero rotational parameter we find good agreement with the prediction from the 4d case considered by Nata Atmaja and Schalm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. See the SageMath notebook \\\url{https://cocalc.com/share/18c3b4248944bcea28f33da59c1e61c37073d4b6/Kerr-AdS-5D-string6.ipynb} for details on the calculation.

REFERENCES

  1. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal, and U. A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions (Cambridge University Press, 2014).

    Book  Google Scholar 

  2. I. Ya. Aref’eva, “Holographic approach to quark-gluon plasma in heavy ion collisions,” Phys. Usp. 57, 527 (2014).

    Article  ADS  Google Scholar 

  3. Liang Zuo-Tang and Wang Xin-Nian, “Globally polarized quark-gluon plasma in non-central A + A collisions,” Phys. Rev. Lett. 94, 10230 (2005).

    Google Scholar 

  4. X.-G. Huang, P. Huovinen, and X.-N. Wang, “Quark polarization in a viscous quark-gluon plasma,” Phys. Rev. C 84, 054910 (2011).

    Article  ADS  Google Scholar 

  5. M. I. Baznat, K. K. Gudima, A. S. Sorin, and O. V. Teryaev, “Femto-cyclones and hyperon polarization in heavy-ion collisions,” Phys. Rev. C 93, 031902 (2016).

    Article  ADS  Google Scholar 

  6. S. W. Hawking, C. J. Hunter, and M. Taylor-Robinson, “Rotation and the AdS/CFT correspondence,” Phys. Rev. D: Part. Fields 59, 064005 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  7. S. W. Hawking and H. S. Reall, “Charged and rotating AdS black holes and their CFT duals,” Phys. Rev. D: Part. Fields 61, 024014 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  8. D. S. Berman and M. K. Parikh, “Holography and rotating AdS black holes,” Phys. Lett. B 463, 168–173 (1999).

    Article  ADS  MathSciNet  Google Scholar 

  9. A. M. Awad and C. V. Johnson, “Higher dimensional Kerr-AdS black holes and the AdS/CFT correspondence,” Phys. Rev. D: Part. Fields 61, 124023 (2001).

    Article  ADS  MathSciNet  Google Scholar 

  10. G. W. Gibbons, M. J. Perry, and C. N. Pope, “The first law of thermodynamics for Kerr-Anti-De Sitter black holes,” Classical Quantum Gravity 22, 1503 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  11. S. Bhattacharyya, R. Loganayagam, I. Mandal, S. Minwalla, and A. Sharma, “Conformal nonlinear fluid dynamics from gravity in arbitrary dimensions,” J. High Energy Phys., No. 12, 116 (2008).

  12. A. Nata Atmaja and K. Schalm, “Anisotropic drag force from 4D Kerr-AdS black holes,” J. High Energy Phys., No. 4, 70 (2011).

  13. J. B. Amado, B. Carneiro da Cunha, and E. Pallante, “On the Kerr-AdS/CFT correspondence,” J. High Energy Phys., No. 8, 94 (2017).

  14. M. Cvetic, Geng Wei-Jian, H. Lu, and C. N. Pope, “BPS Kerr-AdS time machines,” J. High Energy Phys., No. 7, 88 (2018).

  15. A. Castro, F. Larsen, and I. Papadimitriou, “5D rotating black holes and the nAdS2/nCFT1 correspondence,” J. High Energy Phys., No. 4, 55 (2019).

  16. H. Bantilan, T. Ishii, and P. Romatschke, “Holographic heavy-ion collisions: Analytic solutions with longitudinal flow, elliptic flow and vorticity,” Phys. Lett. B 785, 201–206 (2018).

    Article  ADS  Google Scholar 

  17. C. P. Herzog, A. Karch, P. Kovtun, C. Kozcaz, and L. G. Yaffe, “Energy loss of a heavy quark moving through N = 4 supersymmetric Yang–Mills plasma,” J. High Energy Phys., No. 7, 13 (2006).

  18. S. S. Gubser, “Drag force in AdS/CFT,” Phys. Rev. D 74, 126005 (2006).

    Article  ADS  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is based on a talk at the International Bogolyubov Conference Problems of Theoretical and Mathematical Physics in Dubna, Russia on 11–13 September 2019. We would like to thank the organizers of the Bogolyubov Conference-2019 for the invitation. The authors are grateful to Nata Atmaja for useful clarifications.

Funding

The work of IA and AG is supported by Russian Foundation for Basic Research (RFBR) grant no. 18-02-40069 mega. AG is supported by the JINR grant for young scientists no. 20-302-02. EG acknowledges support from CNRS 80 PRIME program TNENGRAV.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. Aref’eva, A. Golubtsova or E. Gourgoulhon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aref’eva, I., Golubtsova, A. & Gourgoulhon, E. On the Drag Force of a Heavy Quark via 5d Kerr-AdS Background. Phys. Part. Nuclei 51, 535–539 (2020). https://doi.org/10.1134/S1063779620040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040103

Navigation