Skip to main content
Log in

Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrödinger Type Dynamical Systems

  • Published:
Physics of Particles and Nuclei Aims and scope Submit manuscript

Abstract

In this work we study integrability aspects of the current algebra representation and the factorized quantum nonlinear Schrödinger type dynamical systems, initiated before by G. Goldin with collaborators, in suitably renormalized Fock type Hilbert spaces. There is developed the current algebra representation scheme of reconstructing algebraically factorized quantum Hamiltonian and symmetry operators in the Fock type space. There is presented its application to constructing quantum factorized Hamiltonian systems and their symmetry operators in case of quantum integrable spatially many- and one-dimensional dynamical systems. As examples we have studied in detail the factorized structure of Hamiltonian operators, describing such quantum integrable spatially one-dimensional models as the Calogero–Moser–Sutherland and Nonlinear Schrödinger dynamical systems of spin-less Bose-particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. F. A. Berezin, The Method of Second Quantization (Academic Press, New York, 1966).

    MATH  Google Scholar 

  2. F. A. Berezin and M. A. Shubin, Schrödinger Equation (Springer, 1991).

    Book  Google Scholar 

  3. D. Blackmore, A. K. Prykarpatsky, and V. Hr. Samoylenko, Nonlinear Dynamical Systems of Mathematical Physics: Spectral and Differential-Geometrical Integrability Analysis (World Scientific, 2011).

    Book  Google Scholar 

  4. N. N. Bogolubov and N. N. Bogolubov, Jr., Introduction into Quantum Statistical Mechanics (World Scientific, 1986).

    MATH  Google Scholar 

  5. L. D. Faddeev and O. A. Yakubovskii, Lectures on Quantum Mechanics for Mathematics Students (American Mathematical Society, 2009).

    Book  Google Scholar 

  6. V. A. Fock, “Konfigurationsraum und zweite Quantelung,” Z. Phys. 75, 622–647 (1932).

    Article  ADS  Google Scholar 

  7. G. A. Goldin, J. Grodnik, R. T. Powers, and D. Sharp, “Nonrelativistic current algebra in the N/V limit,” J. Math. Phys. 15, 88–100 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  8. Yu. A. Mitropolsky, N. N. Bogolubov, A. K. Prykarpatsky, and V. Hr. Samoylenko, Integrable Dynamical Systems. Spectral and Differential Geometric Aspects (Naukova Dumka, Kyiv, 1987).

    Google Scholar 

  9. A. Prykarpatsky and I. Mykytyuk, Algebraic Integrability of Nonlinear Dynamical Systems on Manifolds: Classical and Quantum Aspects (Kluwer Academic, Amsterdam, 1998).

    Book  Google Scholar 

  10. A. K. Prykarpatsky, U. Taneri, and N. N. Bogolubov, Jr., Quantum Field Theory and Application to Quantum Nonlinear Optics (World Scientific, New York, 2002).

    Book  Google Scholar 

  11. L. A. Takhtajan, Quantum Mechanics for Mathematicians (Stony Brook University, Stony Brook, NY, 2018).

    MATH  Google Scholar 

  12. Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators. Translations of Mathematical Monographs, Vol. 17 (1968).

  13. Y. M. Berezansky and Y. G. Kondratiev, Spectral Methods in Infinite Dimensional Analysis (Kluwer Academic, Dordrecht, 1995), Vols. 1–2.

    Book  Google Scholar 

  14. P. A. M. Dirac, The Principles of Quantum Mechanics (Clarendon Press, Oxford, 1935), 2nd ed.

    MATH  Google Scholar 

  15. N. N. Bogolubov, Jr. and A. K. Prykarpatsky, “Quantum method of generating Bogolubov functionals in statistical physics: Current Lie algebras, their representations and functional equations,” Fiz. Elem. Chastits At. Yadra 17, 791–827 (1986).

    Google Scholar 

  16. G. A. Goldin, “Nonrelativistic current algebras as unitary representations of groups,” J. Math. Phys. 12, 462–487 (1971).

    Article  ADS  MathSciNet  Google Scholar 

  17. I. Ya. Aref’eva, “Current formalism in nonrelativistic quantum mechanics”, Theor. Math. Phys. 10, 146–155 (1972).

    Article  Google Scholar 

  18. G. A. Goldin, “Lectures on diffeomorphism groups in quantum physics,” in Contemporary Problems in Mathematical Physics, Proceedings of the Third International Workshop (World Scientific, Singapore, 2004), pp. 3–93.

  19. G. A. Goldin, R. Menikoff, and F. H. Sharp, “Diffeomorphism groups, gauge groups, and quantum theory,” Phys. Rev. Lett. 51, 2246–2249 (1983).

    Article  ADS  MathSciNet  Google Scholar 

  20. G. A. Goldin, R. Menikoff, and F. H. Sharp, “Representations of a local current algebra in nonsimply connected space and the Aharonov–Bohm effect,” J. Math. Phys. 22, 1664–1668 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  21. G. A. Goldin and D. H. Sharp, “Lie algebras of local currents and their representations,” in Group Representations in Mathematics and Physics: Battelle Seattle 1969 Rencontres, Ed. by G. A. Goldin, R. Hermann, B. Kostant, L. Michel, C. C. Moore, L. O’Raifeartaigh, W. Rühl, D. H. Sharp, I. T. Todorov, and V. Bargmann (Springer, Berlin, 1970).

    Book  Google Scholar 

  22. R. Menikoff, “Generating functionals determining representation of a nonrelativistic local current algebra in the N/V limit,” J. Math. Phys. 15, 1394–1408 (1974).

    Article  ADS  MathSciNet  Google Scholar 

  23. R. Menikoff and D. Sharp, “Representation of a local current algebra: Their dynamical determination,” J. Math. Phys. 16, 2341–2352 (1975).

    Article  ADS  MathSciNet  Google Scholar 

  24. L. Lapointe and L. Vinet, “Exact operator solution of the Calogero–Moser–Sutherland model,” Commun. Math. Phys. 178, 425–452 (1996).

    Article  ADS  Google Scholar 

  25. A. N. Sergeev and A. P. Veselov, “Dunkl operators at infinity and Calogero–Moser systems” (2013). arXiv: 1311.0853 [math-ph].

  26. Y.-Z. Jiang, Y.-Y. Chen, and X.-W. Guan, “Understanding many-body physics in one dimension from the Lieb-Liniger model” (2015). arXiv:1502.03291 [cond-mat.quant-gas].

  27. E. K. Sklyanin, “Quantum version of the method of inverse scattering problem,” Differential geometry, Lie groups and mechanics. Part III, J. Sov. Math. 19, 1546–1596 (1982).

    Article  Google Scholar 

  28. E. K. Sklyanin, L. A. Takhtadzhyan, and L. D. Faddeev, “Quantum inverse problem method. I,” Theor. Math. Phys. 40, 688–706 (1982).

    Article  Google Scholar 

  29. I. Aniceto, J. Avan, and A. Jevicki, “Poisson structures of Calogero–Moser and Ruijsenaars–Schneider models,” J. Phys. A: Math. Theor. 43, 185201 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  30. C. F. Dunkl, “Differential-difference operators associated to reflection groups,” Trans. Am. Math. Soc. 311, 167–183 (1989).

    Article  MathSciNet  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors would like to convey their warm thanks to Profs. Gerald Goldin, Joel Lebowitz, Denis Blackmore, Maciej Błaszak and Anatol Odziewicz for instructive discussions, useful comments and remarks. Special authors appreciations belongs to Prof. Joel Lebowitz for invitations to take part in the 121st Statistical Mechanics Conference held on May 12–14, 2019 in the Rutgers University, New Brunswick, NJ, USA. The authors’ acknowledgements belong to the Department of Physics, Mathematics and Computer Science of the Cracov University of Technology for a local research grant F-2/370/2018/DS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. K. Prykarpatski.

Additional information

On memory of N.N. Bogolubov, a mathematical physics giant of the XXth century—on his 110th Birthday Jubilee

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bogolubov, N.N., Prorok, D. & Prykarpatski, A.K. Integrability Aspects of the Current Algebra Representation and the Factorized Quantum Nonlinear Schrödinger Type Dynamical Systems. Phys. Part. Nuclei 51, 434–442 (2020). https://doi.org/10.1134/S1063779620040152

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063779620040152

Keywords:

Navigation