Skip to main content
Log in

Synthesis and Biological Activity of 8-(Dialkylamino)-3-aryl-6-oxo-2,4-dicyanobicyclo[3.2.1]octane-2,4-dicarboxylic Acids Diethyl Esters

  • Published:
Russian Journal of General Chemistry Aims and scope Submit manuscript

Abstract

Cascade reaction of 2 equiv. of furfural (or equimolar amounts of furfural and aromatic aldehyde) with secondary amines and ethyl cyanoacetate afforded diethyl esters of 8-(dialkylamino)-3-aryl-6-oxo-2,4-dicyanobicyclo[3.2.1]octane-2,4-dicarboxylic acids with yields of 37–54%. Antimicrobial activity of a number of obtained compounds in vitro was studied, and biological activity in silico was analyzed. The obtained bicyclo[3.2.1]octanes are inactive or exhibit weak fungicidal activity, but exhibit moderate bactericidal effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Filippini, M.H. and Rodriguez, J., Chem. Rev., 1999, vol. 99, p. 27. https://doi.org/10.1021/cr970029u

    Article  CAS  PubMed  Google Scholar 

  2. Presset, M., Coquerel, Y., and Rodriguez, J., Chem. Rev., 2013, vol. 113, p. 525. https://doi.org/10.1021/cr200364p

    Article  CAS  PubMed  Google Scholar 

  3. Lefranc, A., Gremaud, L., and Alexakis, A., Org. Lett., 2014, vol. 16. N 20, p. 5242. https://doi.org/10.1021/ol502171h

    Article  CAS  PubMed  Google Scholar 

  4. He, C., Bai, Z., Hu, J., Wang, B., Xie, H., Yu, L., and Ding, H., Chem. Commun., 2017, vol. 53, p. 8435. https://doi.org/10.1039/c7cc04292b

    Article  CAS  Google Scholar 

  5. Takatori, K., Ota, S., Tendo, K., Matsunaga, K., Nagasawa, K., Watanabe, S., Kishida, A., Kogen, H., and Nagaoka, H., Org. Lett., 2017, vol. 19, p. 3763. https://doi.org/10.1021/acs.orglett.7b01604

    Article  CAS  PubMed  Google Scholar 

  6. Zhao, J., Yang, S., Xie, X., Li, X., and Liu, Y., J. Org. Chem., 2018, vol. 83, no. 3, p. 1287. https://doi.org/10.1021/acs.joc.7b02816

    Article  CAS  PubMed  Google Scholar 

  7. Yuan, Z., Feng, Z., Zeng, Y., Zhao, X., Lin, A., and Yao, H., Angew. Chem., 2019, vol. 131, no. 9, p. 2910. https://doi.org/10.1002/ange.201900059

    Article  Google Scholar 

  8. Meltzer, P.C., Blundell, P., Yong, Y.F., Chen, Z., George, C., Gonzalez, M.D., and Madras, B.K., J. Med. Chem., 2000, vol. 43, no. 16, p. 2982. https://doi.org/10.1021/jm000191g

    Article  CAS  PubMed  Google Scholar 

  9. Meltzer, P.C., Blundell, P., Chen, Z., Yong, Y.F., and Madras, B.K., Bioorg. Med. Chem. Lett., 1999, vol. 9, p. 857. https://doi.org/10.1016/S0960-894X(99)00098-0

    Article  CAS  PubMed  Google Scholar 

  10. Zefirov, N.A., Lavrushkina, E.A., Kuznetsov, S.A., and Zefirova, O.N., Biomed. Khim., 2019, vol. 65, no. 2, p. 86. https://doi.org/10.18097/PBMC20196502086

    Article  CAS  PubMed  Google Scholar 

  11. Santos, M.F., Alcântara, B.G., Feliciano, C.D.R., Silva, A.F., Maiolini, T.C., Neto, A.K., Murgu, M., Chagas de Paula, D.A., and Soares, M.G., Phytochem. Lett., 2019, vol. 30, p. 31. https://doi.org/10.1016/j.phytol.2019.01.014

    Article  CAS  Google Scholar 

  12. Liu, Y., Liu, F., Qiao, M.M., Guo, L., Chen, M.H., Peng, C., and Xiong, L., Org. Lett., 2019, vol. 21, no. 4, p. 1197. https://doi.org/10.1021/acs.orglett.9b00149

    Article  CAS  PubMed  Google Scholar 

  13. Peter, C., Geoffroy, P., and Miesch, M., Org. Biomol. Chem., 2018, vol. 16, p. 1381. https://doi.org/10.1039/c7ob03124f

    Article  CAS  PubMed  Google Scholar 

  14. Dotsenko, V.V., Ismiev, A.I., Khrustaleva, A.N., Frolov, K.A., Krivokolysko, S.G., Chigorina, E.A., Snizhko, A.P., Gromenko, V.M., Bushmarinov, I.S., Askerov, R.K., Pekhtereva, T.M., Suykov, S.Yu., Papayanina, E.S., Mazepa, A.V., and Magerramov, A.M., Chem. Heterocycl. Compd., 2016, vol. 52, no. 7, p. 473. https://doi.org/10.1007/s10593-016-1918-3

    Article  CAS  Google Scholar 

  15. Hajiyeva, K., Ismiev, A., Franz, M., Schmidtmann, M., Martens, J., and Maharramov, A., Synth. Commun., 2017, vol. 47, no. 22, p. 2031. https://doi.org/10.1080/00397911.2017.1359845

    Article  CAS  Google Scholar 

  16. Dotsenko, V.V., Frolov, K.A., Pekhtereva, T.M., Papaianina, O.S., Suykov, S.Yu., and Krivokolysko, S.G., ACS Comb. Sci., 2014, vol. 16, no. 10, p. 543. https://doi.org/10.1021/co5000807

    Article  CAS  PubMed  Google Scholar 

  17. Ismiev, A.I., Dotsenko, V.V., Aksenov, N.A., Mamedova, G.Z., and Magerramov, A.M., Russ. J. Gen. Chem., 2018, vol. 88, no. 7, p. 1533. https://doi.org/10.1134/S1070363218070289

    Article  CAS  Google Scholar 

  18. Ismiyev, A.I., Dotsenko, V.V., Bespalov, A.V., Netreba, E.E., and Maharramov, A.M., Russ. J. Gen. Chem., 2020, vol. 90, no. 2, p. 187. https://doi.org/10.1134/S1070363220020048

    Article  CAS  Google Scholar 

  19. Piutti, C. and Quartieri, F., Molecules, 2013, vol. 18, no. 10, p. 12290. https://doi.org/10.3390/molecules181012290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Verrier, C., Moebs-Sanchez, S., Queneau, Y., and Popowycz, F., Org. Biomol. Chem., 2018, vol. 16, no. 5, p. 676. https://doi.org/10.1039/C7OB02962D

    Article  CAS  PubMed  Google Scholar 

  21. Piancatelli, G., D’Auria, M., and D’Onofrio, F., Synthesis, 1994, no. 9, p. 867. https://doi.org/10.1055/s-1994-25591

    Article  Google Scholar 

  22. Tius, M.A., Eur. J. Org. Chem., 2005, p. 2193. https://doi.org/10.1002/ejoc.200500005

  23. Gomes, R.F., Coelho, J.A., and Afonso, C.A., Chem. Eur. J., 2018, vol. 24, no. 37, p. 9170. https://doi.org/10.1002/chem.201705851

    Article  CAS  PubMed  Google Scholar 

  24. Li, H., Tong, R., and Sun, J., Angew. Chem. Int. Ed., 2016, vol. 55, no. 48, p. 15125. https://doi.org/10.1002/anie.201607714

    Article  CAS  Google Scholar 

  25. Tang, W.B., Cao, K.S., Meng, S.S., and Zheng, W.H., Synthesis, 2017, vol. 49, no. 16, p. 3670. https://doi.org/10.1055/s-0036-1589040

    Article  CAS  Google Scholar 

  26. Palmer, L.I. and de Alaniz, J.R., Synlett., 2014, vol. 25, no. 1, p. 8. https://doi.org/10.1055/s-0033-1340157

    Article  CAS  Google Scholar 

  27. Nardi, M., Costanzo, P., De Nino, A., Di Gioia, M.L., Olivito, F., Sindona, G., and Procopio, A., Green Chem., 2017, vol. 19, no. 22, p. 5403. https://doi.org/10.1039/C7GC02303K

    Article  CAS  Google Scholar 

  28. Way2Drug. antiBac-Pred, Laboratory for StructureFunction Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://way2drug.com/antibac/.

  29. Filimonov, D.A., Lagunin, A.A., Gloriozova, T.A., Rudik, A.V., Druzhilovskii, D.S., Pogodin, P.V., and Poroikov, V.V., Chem. Heterocycl. Compd., 2014, vol. 50, no. 3, p. 444. https://doi.org/10.1007/s10593-014-1496-1

    Article  CAS  Google Scholar 

  30. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 1997, vol. 23, nos. 1–3, p. 4. https://doi.org/10.1016/S0169-409X(96)00423-1

    Article  Google Scholar 

  31. Lipinski, C.A., Drug Discov. Today: Technologies, 2004, vol. 1, no. 4, p. 337. https://doi.org/10.1016/j.ddtec.2004.11.007

    Article  CAS  PubMed  Google Scholar 

  32. Lipinski, C.A., Lombardo, F., Dominy, B.W., and Feeney, P.J., Adv. Drug. Deliv. Rev., 2012, vol. 64, p. 4. https://doi.org/10.1016/j.addr.2012.09.019

    Article  Google Scholar 

  33. Sander, T., OSIRIS Property Explorer, Idorsia Pharmaceuticals Ltd., Switzerland. http://www.organic-chemistry.org/prog/peo/.

  34. PASS Online, Laboratory for Structure-Function Based Drug Design, Institute of Biomedical Chemistry (IBMC), Moscow, Russia. http://www.pharmaexpert.ru/passonline/predict.php.

  35. Molinspiration Property Calculation Service, Molinspiration Cheminformatics, Slovak Republic, 2002. https://www.molinspiration.com/.

  36. Daina, A., Michielin, O., and Zoete, V., Sci. Rep., 2017, vol. 7, article no. 42717. https://doi.org/10.1038/srep42717

  37. Gfeller, D., Grosdidier, A., Wirth, M., Daina, A., Michielin, O., and Zoete, V., Nucl. Acids Res., 2014, vol. 42, no. W1, p. W32. https://doi.org/10.1093/nar/gku293

  38. Cheng, F., Li, W., Zhou, Y., Shen, J., Wu, Z., Liu, G., Lee, P.W., and Tang, Y., J. Chem. Inf. Model., 2012, vol. 52, no. 11, p. 3099. https://doi.org/10.1021/ci300367a

    Article  CAS  PubMed  Google Scholar 

  39. Balouiri, M., Sadiki, M., and Ibnsouda, S.K., J. Pharm. Analysis, 2016, vol. 6, no. 2, p. 71. https://doi.org/10.1016/j.jpha.2015.11.005

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Education and Science of the Russian Federation (project no. 0795-2020-0031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ismiyev.

Ethics declarations

No conflict of interest was declared by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismiyev, A.I., Shoaib, M., Dotsenko, V.V. et al. Synthesis and Biological Activity of 8-(Dialkylamino)-3-aryl-6-oxo-2,4-dicyanobicyclo[3.2.1]octane-2,4-dicarboxylic Acids Diethyl Esters. Russ J Gen Chem 90, 1418–1425 (2020). https://doi.org/10.1134/S1070363220080071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070363220080071

Keywords:

Navigation