Skip to main content
Log in

Diesel Impacts on Functional Bacterial Groups and Collembolans During Phytoremediation in a Mesocosm System

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Phytoremediation of contaminated soils relies on the ability of plants to stimulate microbial rhizosphere diversity, by releasing root exudates. This work assessed the impact of diesel contamination on soil populations of culturable bacterial groups (fast growing, N2-fixing, phosphate (P) solubilizing, and lipolytic bacteria), and collembolans under mesocosm conditions with and without the influence Medicago sativa. We set up six treatments sampled initially within 24 h and examined at 4, 8, and 12 months. Bacterial groups were isolated and identified with 16S rRNA sequencing, while collembolans were classified using taxonomic keys. The populations of P-solubilizing and fast-growing bacteria were stimulated after 4 months in the polluted treatments in absence of M. sativa. On the M. sativa treatments, P-solubilizing and lipolytic bacteria increased after 8 months. Stenotrophomonas and Achromobacter were the most predominant bacterial genera. Collembolans mainly belonging to Poduromorpha and Entomobryomorpha orders, were observed in contaminated treatments on the 12th month, while in the uncontaminated control were found at the 4th month. Hydrocarbon degradation was higher than 80% in all treatments after 12 months. Diesel contamination and soil management reduced significantly the collembolan abundance; these organisms may be considered as biological indicators of soil quality and recovery after an event of diesel contamination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alarcón, A., García-Díaz, M., Hernández-Cuevas, L. V., Esquivel-Cote, R., Ferrera-Cerrato, R., Alamraz-Suarez, J. J., & Ferrera-Rodríguez, O. (2019). Impact of crude oil on functional groups of culturable bacteria and colonization of symbiotic microorganisms in the Clitoria-Brachiaria rhizosphere grown in mesocosms. Acta biológica colombiana, 24(2), 343–353. https://doi.org/10.15446/abc.v24n2.64771.

    Article  Google Scholar 

  • Bais, H. P., Park, S. W., Weir, T. L., Callaway, R. M., & Vivanco, J. M. (2004). How plants communicate using the underground information superhighway. Trends in Plant Science, 9, 26–32. https://doi.org/10.1016/j.tplants.2003.11.008.

    Article  CAS  Google Scholar 

  • Benson, D. A., Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J., & Sayers, E. W. (2014). GenBank. Nucleic Acids Research, 42(1), D32–D37. https://doi.org/10.1093/nar/gkt1030.

    Article  CAS  Google Scholar 

  • Biache, C., Ouali, S., Cébron, A., Lorgeoux, C., Colombano, S., & Faure, P. (2017). Bioremediation of PAH-contaminated soils: Consequences on formation and degradation of polar-polycyclic aromatic compounds and microbial community abundance. Journal of Hazardous Materials, 329, 1–10. https://doi.org/10.1016/j.jhazmat.2017.01.026.

    Article  CAS  Google Scholar 

  • Blakely, J. K., Neher, D. A., & Spongberg, A. L. (2002). Soil invertebrate and microbial communities, and decomposition as indicators of polycyclic aromatic hydrocarbon contamination. Applied Soil Ecology, 21, 71–88. https://doi.org/10.1016/S0929-1393(02)00023-9.

    Article  Google Scholar 

  • Boitaud, L., Salmon, S., Bourlette, C., & Ponge, J. F. (2006). Avoidance of low doses of naphthalene by collembola. Environmental Pollution, 139, 451–454. https://doi.org/10.1016/j.envpol.2005.06.013.

    Article  CAS  Google Scholar 

  • Bourceret, A., Cébron, A., Tisserant, E., Poupin, P., Bauda, P., Beguiristain, T., & Leyval, C. (2016). The bacterial and fungal diversity of an aged PAH-and heavy metal-contaminated soil is affected by plant cover and edaphic parameters. Microbial Ecology, 71, 711–724. https://doi.org/10.1007/s00248-015-0682-8.

    Article  CAS  Google Scholar 

  • Cébron, A., Cortet, J., Criquet, S., Biaz, A., Calvert, V., Caupert, C., Pernin, C., & Leyval, C. (2011). Biological functioning of PAH-polluted and thermal desorption-treated soils assessed by fauna and microbial bioindicators. Research in Microbiology, 162, 896–907. https://doi.org/10.1016/j.resmic.2011.02.011.

    Article  CAS  Google Scholar 

  • Covino, S., Fabianová, T., Křesinová, Z., Čvančarová, M., Burianová, E., Filipová, A., Vořísková, J., Baldrian, P., & Cajthaml, T. (2016). Polycyclic aromatic hydrocarbons degradation and microbial community shifts during co-composting of creosote-treated wood. Journal of Hazardous Materials, 301, 17–26. https://doi.org/10.1016/j.jhazmat.2015.08.023.

    Article  CAS  Google Scholar 

  • Díaz-Martínez, M. E., Alarcón, A., Ferrera-Cerrato, R., Almaraz-Suarez, J. J., & García-Barradas, O. (2013). Crecimiento de Casuarina equisetifolia (Casuarinaceae) en suelo con diésel, y aplicación de bioestimulación y bioaumentación. Revista de Biología Tropical, 61(3), 1039–1052.

    Article  Google Scholar 

  • Dubey, R. K., Tripathi, V., Dubey, P. K., Singh, H. B., & Abhilash, P. C. (2016). Exploring rhizospheric interactions for agricultural sustainability: The need of integrative research on multi-trophic interactions. Journal of Cleaner Production, 115, 362–365. https://doi.org/10.1016/j.jclepro.2015.12.077.

    Article  CAS  Google Scholar 

  • Dunger, W., Schlitt, B., 2011. Synopses on Palaearctic Collembola. Tullbergiidae. Vol. 6/1. Editor: Dunger, W. Museum of Natural History Görlitz.

  • Flandrois, J. P., Perrière, G., & Gouy, M. (2015). leBIBIQBPP: A set of databases and a webtool for automatic phylogenetic analysis of prokaryotic sequences. BMC Bioinformatics, 16, 251. https://doi.org/10.1186/s12859-015-0692-z.

    Article  CAS  Google Scholar 

  • García-Segura, D., Castillo-Murrieta, I. M., Martínez-Rabelo, F., Gomez-Anaya, A., Rodríguez-Campos, J., Hernández-Castellano, B., Contreras-Ramos, S. M., & Barois, I. (2017). Macrofauna and mesofauna from soil contaminated by oil extraction. Geoderma, 332, 180–189. https://doi.org/10.1016/J.GEODERMA.2017.06.013.

    Article  Google Scholar 

  • Gbarakoro, T. N., & Chukumati, J. (2016). Impact of spent mushroom substrate on soil microarthropods in spent automobile lubricant habitat-types at University Farm, University of Port Harcourt, Rivers State, Nigeria. International Journal of Environment and Pollution Research, 4, 13–23 ISSN 2056-7537(print), ISSN 2056-7545(online).

    Google Scholar 

  • Gerhardt, K. E., Huang, X. D., Glick, B. R., & Greenberg, B. M. (2009). Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Science, 176, 20–30. https://doi.org/10.1016/j.plantsci.2008.09.01.

    Article  CAS  Google Scholar 

  • Gillet, S., & Ponge, J. F. (2004). Are acid-tolerant Collembola able to colonize metal-polluted soil? Applied Soil Ecology, 26, 219–231. https://doi.org/10.1016/j.apsoil.2004.01.001.

    Article  Google Scholar 

  • Gillet, S., & Ponge, J. F. (2005). Species assemblages and diets of Collembola in the organic matter accumulated over an old tar deposit. European Journal of Soil Biology, 41, 39–44. https://doi.org/10.1016/j.ejsobi.2005.07.001.

    Article  CAS  Google Scholar 

  • Glick, B. R. (2003). Phytoremediation: Synergistic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393. https://doi.org/10.1016/S0734-9750(03)00055-7.

    Article  CAS  Google Scholar 

  • Gouda, H. A., El-Gendy, A. S., Abd El-Razek, T. M., & El-Kassas, H. I. (2016). Evaluation of phytoremediation and bioremediation for sandy soil contaminated with petroleum hydrocarbons. International Journal of Environmental Science and Development, 7, 490–493. https://doi.org/10.18178/ijesd.2016.7.7.826.

    Article  CAS  Google Scholar 

  • Hall, T. A. (1999). BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.

    CAS  Google Scholar 

  • Hamamura, N., Olson, S. H., Ward, D. M., & Inskeep, W. P. (2006). Microbial population dynamics associated with crude-oil biodegradation in diverse soils. Applied and Environmental Microbiology, 72, 6316–6324. https://doi.org/10.1128/AEM.01015-06.

    Article  CAS  Google Scholar 

  • Hernández-Ortega, H. A., Alarcón, A., Ferrera-Cerrato, R., Zavaleta-Mancera, H. A., López-Delgado, H. A., & Mendoza-López, M. R. (2012). Arbuscular mycorrhizal fungi on growth, nutrient status, and total antioxidant activity of Melilotus albus during phytoremediation of a diesel-contaminated substrate. Journal of Environmental Management, 95, S319–S324. https://doi.org/10.1016/j.jenvman.2011.02.015.

    Article  CAS  Google Scholar 

  • Hernández-Ortega, H. A., Quintanar-Isaías, P. A., Jaramillo-Pérez, A. T., Alarcón, A., Ferrera-Cerrato, R., & Lazzarini-Lechuga, R. (2014). Diesel effects on root hydraulic conductivity and morphological changes of the vascular cylinder in Medicago sativa. Environmental and Experimental Botany, 105, 1–9.

    Article  Google Scholar 

  • Houlton, B. Z., Wang, Y. P., Vitousek, P. M., & Field, C. B. (2008). A unifying framework for dinitrogen fixation in the terrestrial biosphere. Nature, 454, 327–330. https://doi.org/10.1038/nature07028.

    Article  CAS  Google Scholar 

  • IUSS Working Group WRB, 2015. Base referencial mundial del recurso suelo 2014, Actualización 2015. Sistema internacional de clasificación de suelos para la nomenclatura de suelos y la creación de leyendas de mapas de suelos. FAO, Roma. ISBN 978–92–5-308369-5. pp: 218.

  • Jeon, Y. S., Lee, K., Park, S. C., Kim, B. S., Cho, Y. J., Ha, S. M., & Chun, J. (2014). EzEditor: A versatile sequence alignment editor for both rRNA- and protein-coding genes. International Journal of Systematic and Evolutionary Microbiology, 64, 689–691. https://doi.org/10.1099/ijs.0.059360-0.

    Article  CAS  Google Scholar 

  • Kukla, M., Plociniczak, T., & Piotrowska-Seget, Z. (2014). Diversity of endophytic bacteria in Lolium perenne and their potential to degrade petroleum hydrocarbons and promote plant growth. Chemosphere, 117, 40–46. https://doi.org/10.1016/j.chemosphere.2014.05.055.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular evolutionary genetics analysis version 7.0 for Bigger Datasets. Molecular Biology and Evolution, 33(7), 1870–1874. https://doi.org/10.1093/molbev/msw054.

    Article  CAS  Google Scholar 

  • Langarica-Fuentes, A., Zafar, U., Heyworth, A., Brown, T., Fox, G., Robson, G. D., Newell, V. A., & Goberna, M. (2014). Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiology Ecology, 88, 296–308. https://doi.org/10.1111/1574-6941.12293.

    Article  CAS  Google Scholar 

  • Louchouarn, P., Bonner, J.S., Tissot, P., McDonald, T.J., Fuller, C., Page, C., 2000. Quantitative determination of oil films/slicks from water surfaces using a modified solidphase extraction (SPE) sampling method. In: Proceedings of the 23rd Arctic Marine Oil Spill Program Meeting, Vancouver, Canada. Vol. 1:59–68.

  • Maletić, S., Dalmacija, B., Rončević, S., Agbaba, J., & Petrovic, O. (2009). Degradation kinetics of an aged hydrocarbon-contaminated soil. Water, Air, and Soil Pollution, 202, 149–159. https://doi.org/10.1007/s11270-008-9965-8.

    Article  CAS  Google Scholar 

  • Marchand, L., Sabaris, C. Q., Desjardins, D., Oustrière, N., Pesme, E., Butin, D., Wicart, G., & Mench, M. (2016). Plant responses to a phytomanaged urban technosol contaminated by trace elements and polycyclic aromatic hydrocarbons. Environmental Science and Pollution Research, 23, 3120–3135. https://doi.org/10.1007/s11356-015-4984-7.

    Article  CAS  Google Scholar 

  • Marschner, P., Yang, C. H., Lieberei, R., & Crowley, D. E. (2001). Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biology and Biochemistry, 33, 1437–1445. https://doi.org/10.1016/S0038-0717(01)00052-9.

    Article  CAS  Google Scholar 

  • McIntosh, P., Schuthess, C. P., Kuzovkina, Y. A., & Guillard, K. (2017). Bioremediation and phytoremediation of total petroleum hydrocarbons (TPH) under various conditions. International Journal of Phytoremediation, 19, 755–764. https://doi.org/10.1080/15226514.2017.1284753.

    Article  CAS  Google Scholar 

  • Melekhina, E. N., Markarova, M. Y., Shchemelinina, T. N., Anchugova, E. M., & Kanev, V. A. (2015). Secondary successions of biota in oil-polluted peat soil upon different biological remediation methods. Eurasian Soil Science, 48, 643–653 ISSN 1556-195X.

    Article  Google Scholar 

  • Mikkonen, A., Lappi, K., Wallenius, K., Lindström, K., Suominen, L., Hartikainen, K., Raateland, A., Niemi, R. M., Ulrich, A., & Tebbe, C. C. (2011). Ecological inference on bacterial succession using curve-based community fingerprint data analysis, demonstrated with rhizoremediation experiment. FEMS Microbiology Ecology, 78, 604–616. https://doi.org/10.1111/j.1574-6941.2011.01187.x.

    Article  CAS  Google Scholar 

  • Miles, A. A., Misra, S. S., & Irwin, J. O. (1938). The estimation of the bactericidal power of the blood. Epidemiology and Infection, 38, 732–749. https://doi.org/10.1017/S002217240001158X.

    Article  CAS  Google Scholar 

  • Morales-Guzmán, G., Ferrera-Cerrato, R., Rivera-Cruz, M. C., Torres-Bustillos, L. G., Arteaga-Garibay, R. I., Mendoza-López, M. R., Esquivel-Cote, R., & Alarcón, A. (2017). Diesel degradation by emulsifying bacteria isolated from soils polluted with weathered petroleum hydrocarbons. Applied Soil Ecology, 121, 127–134. https://doi.org/10.1016/j.apsoil.2017.10.003.

    Article  Google Scholar 

  • Mujibur-Rahman, K. S., Rahman, T., Lakshmanaperumalsamy, P., & Banat, I. M. (2002). Occurrence of crude oil degrading bacteria in gasoline and diesel station soils. Journal of Basic Microbiology, 42, 284–291. https://doi.org/10.1002/1521-4028(200208)42:4<284::AID-JOBM284>3.0.CO;2-M.

    Article  Google Scholar 

  • Mukhopadhyay, S., George, J., & Masto, R. E. (2017). Changes in polycyclic aromatic hydrocarbons (PAHs) and soil biological parameters in a revegetated coal mine spoil. Land Degradation and Development, 28, 1047–1055. https://doi.org/10.1002/ldr.2593.

    Article  Google Scholar 

  • Mulder, C. (2006). Driving forces from soil invertebrates to ecosystem functioning: The allometric perspective. Naturwissenschaften, 93, 467–479. https://doi.org/10.1007/s00114-006-0130-1.

    Article  CAS  Google Scholar 

  • Niklasson, M., Petersen, H., & Parker, E. D. (2000). Environmental stress and reproductive mode in Mesaphorura macrochaeta (Tullbergiinae, Collembola). Pedobiologia, 44, 476–488. https://doi.org/10.1078/S0031-4056(04)70065-7.

    Article  Google Scholar 

  • Pacwa-Płociniczak, M., Płociniczak, T., Iwan, J., Zarska, M., Chorazewski, M., Dzida, M., & Piotrowska-Seget, Z. (2016). Isolation of hydrocarbon-degrading and biosurfactant-producing bacteria and assessment their plant growth-promoting traits. Journal of Environmental Management, 168, 175–184. https://doi.org/10.1016/j.jenvman.2015.11.058.

    Article  CAS  Google Scholar 

  • Pausch, J., Kramer, S., Scharroba, A., Scheunemann, N., Butenschoen, O., Kandeler, E., & Marhan, S. (2016). Small but active-pool size does not matter for carbon incorporation in below-ground food webs. Functional Ecology, 30, 479–489. https://doi.org/10.1111/1365-2435.12512.

    Article  Google Scholar 

  • Phillips, L. A., Greer, C. W., & Germida, J. J. (2006). Culture-based and culture-independent assessment of the impact of mixed and single plant treatments on rhizosphere microbial communities in hydrocarbon contaminated flare-pit soil. Soil Biology and Biochemistry, 38, 2823–2833. https://doi.org/10.1016/j.soilbio.2006.04.038.

    Article  CAS  Google Scholar 

  • Phillips, L. A., Germida, J. J., Farrell, R. E., & Greer, C. W. (2008). Hydrocarbon degradation potential and activity of endophytic bacteria associated with prairie plants. Soil Biology and Biochemistry, 40, 3054–3064. https://doi.org/10.1016/j.soilbio.2008.09.006.

    Article  CAS  Google Scholar 

  • Phillips, L. A., Greer, C. W., Farrell, R. E., & Germida, J. J. (2012). Plant root exudates impact the hydrocarbon degradation potential of a weathered-hydrocarbon contaminated soil. Applied Soil Ecology, 52, 56–64. https://doi.org/10.1016/j.apsoil.2011.10.009.

    Article  Google Scholar 

  • Piehler, M. F., Swistak, J. G., Pinckney, J. L., & Paerl, H. W. (1999). Stimulation of diesel fuel biodegradation by indigenous nitrogen fixing bacterial consortia. Microbial Ecology, 38, 69–78 ISSN 1432-184X.

    Article  CAS  Google Scholar 

  • Pikovskaya, R. I. (1948). Mobilization of phosphorus in soil in connection with the vital activity of some microbial species. Mikrobiologiya, 17, 362–370 https://ci.nii.ac.jp/naid/10026513896/en/. Accessed 11 april 2017.

  • Potapov, A.A., 2001. Synopses on palaeactic Collembola. Isotomidae. Volumen 3. Editor: Dunger, W. Moscow State Pedagogical University.

  • Princz, J. I., Moody, M., Fraser, C., Van der Vliet, L., Lemieux, H., Scroggons, R., & Sicilliano, S. D. (2012). Evaluation of a new battery of toxicity tests for boreal forest soils: Assessment of the impact of hydrocarbons and salts. Environmental Toxicology and Chemistry, 31, 766–777. https://doi.org/10.1002/etc.1744.

    Article  CAS  Google Scholar 

  • Relman, (1993). Universal bacterial 16S rRNA amplification and sequencing. In: Diagnostic molecular microbiology: principles and applications 489–495.

  • Rennie, R. J. (1981). A single medium for the isolation of acetylene-reducing (dinitrogen-fixing) bacteria from soils. Canadian Journal of Microbiology, 27, 8–14. https://doi.org/10.1139/m81-002.

    Article  CAS  Google Scholar 

  • Rieff, G. G., Natal-da-Luz, T., Sousa, J. P., Osório-Wallau, M., Hahn, L., & de Saccol, S. (2016). Collembolans and mites communities as a tool for assessing soil quality: Effect of eucalyptus plantations on soil mesofauna biodiversity. Current Science India, 110, 713–719 ISSN: 0011-3891.

    Article  CAS  Google Scholar 

  • Riskuwa-Shehu, M. L., Ijah, U. J. J., Manga, S. B., & Bilbis, L. S. (2017). Evaluation of the use of legumes for biodegradation of petroleum hydrocarbons in soil. International journal of Environmental Science and Technology, 14, 2205–2214 ISSN 1735-2630.

    Article  CAS  Google Scholar 

  • Rončević, S., Dalmacija, B., Ivančev-Tumbas, I., Tričković, J., Petrović, O., Klašnja, M., & Agbaba, J. (2005). Kinetics of degradation of hydrocarbons in the contaminated soil layer. Archives of Environmental Contamination and Toxicology, 49, 27–36. https://doi.org/10.1007/s00244-004-0048-6.

    Article  CAS  Google Scholar 

  • Rusin, M., & Gospodarek, J. (2016). The occurrence of springtails (Collembola) and spiders (Araneae) as an effectiveness indicator of bioremediation of soil contaminated by petroleum-derived substances. International Journal of Environmental Research, 10, 449–458. https://doi.org/10.22059/IJER.2016.58764.

    Article  CAS  Google Scholar 

  • Sangabriel, W., Ferrera-Cerrato, R., Trejo-Aguilar, D., Mendoza-López, M. R., Cruz-Sánchez, J. S., López-Ortiz, C., Delgadillo-Martínez, J., & Alarcón, A. (2006). Tolerancia y capacidad de fitorremediación de combustóleo en el suelo por seis especies vegetales. Revista internacional de contaminación ambiental, 22(2), 63–73.

    CAS  Google Scholar 

  • Sierra, G. (1957). A simple method for the detection of lipolytic activity of micro-organisms and some observations on the influence of the contact between cells and fatty substrates. Antonie Van Leeuwenhoek, 23, 15–22. https://doi.org/10.1007/BF02545855.

    Article  CAS  Google Scholar 

  • Tahseen, R., Afzal, M., Iqbal, S., Shabir, G., Khan, Q. M., Khalid, Z. M., & Banat, I. M. (2016). Rhamnolipids and nutrients boost remediation of crude oil contaminated soil by enhancing bacterial colonization and metabolic activities. International Biodeteroration and Biodegradation, 115, 192–198. https://doi.org/10.1016/j.ibiod.2016.08.010.

    Article  CAS  Google Scholar 

  • Tao, K. Y., Zhang, X. Y., Chen, X. P., Liu, X. Y., Hu, X. X., & Yuan, X. Y. (2019). Response of soil bacterial community to bioaugmentation with a plant residue-immobilized bacterial consortium for crude oil removal. Chemosphere, 222, 831–838. https://doi.org/10.1016/j.chemosphere.2019.01.133.

    Article  CAS  Google Scholar 

  • Umeh, A. C., Vázquez-Cuevas, G. M., & Semple, K. T. (2017). Mineralisation of 14C-phenanthrene in PAH-diesel contaminated soil: Impact of Sorghum bicolor and Medicago sativa mono- or mixed culture. Applied Soil Ecology, 125, 46–55. https://doi.org/10.1016/j.apsoil.2017.12.010.

    Article  Google Scholar 

  • USEPA. (1986). Organic analytes. Document SW-846. In In: Test methods for evaluating solid wastes, third ed. Environmental Protection Agency (pp. 1–16). Washington: Office of Solid Waste and Emergency Response.

    Google Scholar 

  • Uwagbae, M. A., Rotimi, J., & Agwu, E. J. (2014). The pollution of a terrestrial ecosystem from hydrocarbon explitation and its outcome on Collembola (Arthropoda: Insecta). Asian Journal of Microbiology, Biotechnology & Environmental Sciences, 16, 1–11 ISSN-0972-3005.

  • Wei, J., Liu, X., Wang, Q., Wang, C., Chen, X., & Li, H. (2014). Effect of rhizodeposition on pyrene bioaccessibility and microbial structure in pyrene and pyrene lead polluted soil. Chemosphere, 97, 92–97. https://doi.org/10.1016/j.chemosphere.2013.09.105.

    Article  CAS  Google Scholar 

  • Wei, R., Ni, J., Li, X., Chen, W., & Yang, Y. (2017). Dissipation and phytoremediation of polycyclic aromatic hydrocarbons in freshly spiked and long-term field-contaminated soils. Environmental Science and Pollution Research, 24, 7994–8003. https://doi.org/10.1007/s11356-017-8459-x.

    Article  CAS  Google Scholar 

  • Wu, M., Ye, X., Chen, K., Li, W., Yuan, J., & Jiang, X. (2017). Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environmental Pollution, 223, 657–664. https://doi.org/10.1016/j.envpol.2017.01.079.

    Article  CAS  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA and whole genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617. https://doi.org/10.1099/ijsem.0.001755.

    Article  CAS  Google Scholar 

  • Zhang, Z., Schwartz, S., Wagner, L., & Miller, W. (2000). A greedy algorithm for aligning DNA sequences. Journal of Computational Biology, 7, 203–214. https://doi.org/10.1089/10665270050081478.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We also acknowledge to the Manuscript Writing Training Team (CEMAI in Spanish)-CONACYT for critical and constructive paper review.

Funding

A.C. Guerrero-Chavez is financially supported by the National Council of Science and Technology (CONACYT, Mexico) during her master degree graduate program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Alarcón.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Diesel at 10,000 mg kg−1 stimulated functional bacterial groups

• Collembolan populations are affected by either diesel or mechanical soil disturbance

• Plants stimulated the recovery of collembolan regardless diesel contamination

Medicago sativa repressed hydrocarbon degradation at 20,000 mg diesel kg−1

Electronic Supplementary Material

ESM 1

(DOCX 429 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guerrero-Chávez, A., Alarcón, A., Ferrera-Cerrato, R. et al. Diesel Impacts on Functional Bacterial Groups and Collembolans During Phytoremediation in a Mesocosm System. Water Air Soil Pollut 231, 489 (2020). https://doi.org/10.1007/s11270-020-04854-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-020-04854-x

Keywords

Navigation