Skip to main content
Log in

Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon–Heiles system

  • Original paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We provide rigorous computer-assisted proofs of the existence of different dynamical objects, like stable families of periodic orbits, bifurcations and stable invariant tori around them, in the paradigmatic Hénon–Heiles system. There are in the literature a large number of articles with numerical simulations on this system, and other open Hamiltonians, but only a few give a rigorous guarantee of simulations. In this article, we present the necessary link between the numerical simulations and the mathematical structure of the system, since it is relevant to provide evidence of the existence of some of the different objects detected numerically to evaluate the quality of the numerical results. Remarkably, we present a proof of the existence of stable regions in the non-hyperbolic and hyperbolic regimes classically established for the Hénon–Heiles system. In particular, we prove the important results of the existence of bounded stable regular regions located within the escape region, far from the regime of the KAM islands, which are called “safe regions”.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. TIDES, a Taylor Series Integrator for Differential EquationS. https://sourceforge.net/projects/tidesodes/.

  2. CAPD, Computer-Assisted Proofs in Dynamics: A C++ Package for Rigorous Numerics, http://capd.ii.uj.edu.pl.

References

  1. Abad, A., Barrio, R., Blesa, F., Rodríguez, M.: Algorithm 924: TIDES, a Taylor series integrator for differential equations. ACM Trans. Math. Softw. 39(1), 1–28 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aguirre, J., Sanjuán, M.A.F.: Limit of small exits in open Hamiltonian systems. Phys. Rev. 67(5), 056201 (2003)

    Google Scholar 

  3. Aguirre, J., Vallejo, J.C., Sanjuán, M.A.F.: Wada basins and chaotic invariant sets in the Hénon–Heiles system. Phys. Rev. E 64, 066208 (2001)

    Article  Google Scholar 

  4. Arioli, G., Zgliczyński, P.: Symbolic dynamics for the Hénon–Heiles Hamiltonian on the critical level. J. Differ. Eqns 171(1), 173 (2001)

    Article  Google Scholar 

  5. Barrio, R.: Sensitivity tools vs. Poincaré sections. Chaos Solitons Fractals 25(3), 711–726 (2005)

    Article  MathSciNet  Google Scholar 

  6. Barrio, R.: Painting chaos: a gallery of sensitivity plots of classical problems. Int. J. Bifurc. Chaos 16(10), 2777–2798 (2006)

    Article  MathSciNet  Google Scholar 

  7. Barrio, R.: Theory and applications of the orthogonal fast Lyapunov indicator (OFLI and OFLI2) methods. In: Chaos Detection and Predictability, pp. 55–92. Springer, Berlin (2016)

  8. Barrio, R., Blesa, F., Serrano, S.: Fractal structures in the Hénon–Heiles Hamiltonian. Europhys. Lett. 82(1), 10003 (2008)

    Article  Google Scholar 

  9. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and safe regions in open Hamiltonians. New J. Phys. 11, 053004 (2009)

    Article  Google Scholar 

  10. Barrio, R., Blesa, F., Serrano, S.: Bifurcations and chaos in Hamiltonian systems. Int. J. Bifurc. Chaos 20(05), 1293–1319 (2010)

    Article  MathSciNet  Google Scholar 

  11. Barrio, R., Borczyk, W., Breiter, S.: Spurious structures in chaos indicators maps. Chaos Solitons Fractals 40(4), 1697–1714 (2009)

    Article  MathSciNet  Google Scholar 

  12. Barrio, R., Rodríguez, M.: Systematic computer assisted proofs of periodic orbits of Hamiltonian systems. Commun. Nonlinear Sci. Numer. Simul. 19(8), 2660–2675 (2014)

    Article  MathSciNet  Google Scholar 

  13. Barrio, R., Rodríguez, M., Blesa, F.: Computer-assisted proof of skeletons of periodic orbits. Comput. Phys. Commun. 183(1), 80–85 (2012)

    Article  MathSciNet  Google Scholar 

  14. Barrio, R., Serrano, S.: Systematic search of symmetric periodic orbits in 2DOF Hamiltonian systems. Chaos Solitons Fractals 41(2), 560–582 (2009)

    Article  MathSciNet  Google Scholar 

  15. van den Berg, J.B., Jaquette, J.: A proof of Wright’s conjecture. J. Differ. Equ. 264(12), 7412–7462 (2018)

    Article  MathSciNet  Google Scholar 

  16. Blesa, F., Seoane, J.M., Barrio, R., Sanjuán, M.A.F.: To escape or not to escape, that is the question: perturbing the Hénon–Heiles Hamiltonian. Int. J. Bifurc. Chaos 22(06), 1230010 (2012)

    Article  Google Scholar 

  17. Capiński, M.J., Simó, C.: Computer assisted proof for normally hyperbolic invariant manifolds. Nonlinearity 25(7), 1997–2026 (2012)

    Article  MathSciNet  Google Scholar 

  18. Churchill, R.C., Pecelli, G., Rod, D.L.: A survey of the Hénon–Heiles Hamiltonian with applications to related examples. Stoch. Behav. Class. Quantum Hamilt. Syst. (Lect. Notes Phys.) 93, 76 (1979)

    MATH  Google Scholar 

  19. Duarte, P.: Plenty of elliptic islands for the standard family of area preserving maps. Ann. Inst. Henri Poincare (C) Non-linear Anal. 11(4), 359–409 (1994)

    Article  MathSciNet  Google Scholar 

  20. Fedotkin, S.N., Magner, A.G., Brack, M.: Analytic approach to bifurcation cascades in a class of generalized Hénon–Heiles potentials. Phys. Rev. 77(6), 066219 (2008)

    MathSciNet  Google Scholar 

  21. Gameiro, M., Lessard, J.P.: A posteriori verification of invariant objects of evolution equations: periodic orbits in the Kuramoto–Sivashinsky PDE. SIAM J. Appl. Dyn. Syst. 16(1), 687–728 (2017)

    Article  MathSciNet  Google Scholar 

  22. Hénon, M., Heiles, C.: The applicability of the third integral of motion: some numerical experiments. Astronom. J. 69, 73–79 (1964)

    Article  MathSciNet  Google Scholar 

  23. Kapela, T., Mrozek, M., Wilczak, D., Zgliczyński, P.: CAPD::DynSys: a flexible C++ toolbox for rigorous numerical analysis of dynamical systems (preprint)

  24. Kay, K.G., Ramachandran, B.: Classical and quantal pseudoergodic regions of the Hénon–Heiles system. J. Chem. Phys. 88(9), 5688–5703 (1988)

    Article  Google Scholar 

  25. Kennedy, J., Yorke, J.A.: Basins of Wada. Physica D 51(1), 213–225 (1991)

    Article  MathSciNet  Google Scholar 

  26. Lamb, J.S.W.: Reversing Symmetries in Dynamical Systems. Ph.D. Thesis, Universiteit van Amsterdam (1994)

  27. Motter, A.E., de Moura, A.P.S., Grebogi, C., Kantz, H.: Effective dynamics in Hamiltonian systems with mixed phase space. Phys. Rev. E 71, 036215 (2005)

    Article  MathSciNet  Google Scholar 

  28. Nieto, A.R., Zotos, E.E., Seoane, J.M., Sanjuán, M.A.F.: Measuring the transition between nonhyperbolic and hyperbolic regimes in open Hamiltonian systems. Nonlinear Dyn. 99, 3029–3039 (2020)

    Article  Google Scholar 

  29. Sabuco, J., Zambrano, S., Sanjuán, M.A., Yorke, J.A.: Finding safety in partially controllable chaotic systems. Commun. Nonlinear Sci. Numer. Simul. 17(11), 4274–4280 (2012)

    Article  MathSciNet  Google Scholar 

  30. Skokos, C., Gottwald, G.A., Laskar, J. (eds.): Chaos Detection and Predictability Lecture Notes in Physics, vol. 915. Springer, Berlin (2016)

    Google Scholar 

  31. Szczelina, R., Zgliczyński, P.: Algorithm for rigorous integration of delay differential equations and the computer-assisted proof of periodic orbits in the Mackey–Glass equation. Found. Comput. Math. 18(6), 1299–1332 (2018)

    Article  MathSciNet  Google Scholar 

  32. Tucker, W.: Validated Numerics: A Short Introduction to Rigorous Computations. Princeton University Press, Princeton (2011)

    Book  Google Scholar 

  33. Walawska, I., Wilczak, D.: An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs. Appl. Math. Comput. 291, 303–322 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Walawska, I., Wilczak, D.: Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems. Commun. Nonlinear Sci. Numer. Simul. 74, 30–54 (2019)

    Article  MathSciNet  Google Scholar 

  35. Weinstein, A.: Normal modes for nonlinear Hamiltonian systems. Invent. Math. 20(1), 47 (1973)

    Article  MathSciNet  Google Scholar 

  36. Wilczak, D., Barrio, R.: Systematic computer-assisted proof of branches of stable elliptic periodic orbits and surrounding invariant tori. SIAM J. Appl. Dyn. Syst. 16(3), 1618–1649 (2017)

    Article  MathSciNet  Google Scholar 

  37. Wilczak, D., Zgliczyński, P.: Period doubling in the Rössler system: a computer assisted proof. Found. Comput. Math. 9(5), 611–649 (2009)

    Article  MathSciNet  Google Scholar 

  38. Wilczak, D., Zgliczyński, P.: \({\cal{C}}^r\)-Lohner algorithm. Schedae Inf. 20, 9–46 (2011)

    Google Scholar 

  39. Wilczak, D., Zgliczyński, P.: A geometric method for infinite-dimensional chaos: symbolic dynamics for the Kuramoto–Sivashinsky PDE on the line. J. Differ. Equ. 269(10), 8509–8548 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

RB has been supported by the Spanish Ministry of Economy and Competitiveness (Grant PGC2018-096026-B-I00), the European Social Fund (EU) and Aragón Government (Group E24-17R), and the University of Zaragoza-CUD (grant UZCUD2019-CIE-04). DW has been supported by the Polish National Science Center under Maestro Grant No. 2014/14/A/ST1/00453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Barrio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barrio, R., Wilczak, D. Distribution of stable islands within chaotic areas in the non-hyperbolic and hyperbolic regimes in the Hénon–Heiles system. Nonlinear Dyn 102, 403–416 (2020). https://doi.org/10.1007/s11071-020-05930-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-020-05930-x

Keywords

Navigation