Skip to main content
Log in

Novel Neuroprotective Potential of Crocin in Neurodegenerative Disorders: An Illustrated Mechanistic Review

  • Review
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Recent studies reported that crocin, a carotenoid chemical compound common in crocus and gardenia flowers, has protective effects in neurodegenerative disorders due to its anti-oxidative, anti-inflammatory, and anti-apoptotic properties in the nervous system. This article reviews the new experimental, clinical, and pharmacological studies on the neuroprotective properties of crocin and its potential mechanisms to modulate metabolic oxidative stress and inflammation in neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Najas-García A, Rufián S, Rojo E (2014) Neurodevelopment or neurodegeneration: review of theories of schizophrenia. Actas Esp Psiquiatr 42:185–195

    PubMed  Google Scholar 

  2. Krantic S, Mechawar N, Reix S, Quirion R (2005) Molecular basis of programmed cell death involved in neurodegeneration. Trends Neurosci 28:670–676

    CAS  PubMed  Google Scholar 

  3. Muchowski PJ (2002) Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35:9–12

    CAS  PubMed  Google Scholar 

  4. Campbell A (2004) Inflammation, neurodegenerative diseases, and environmental exposures. Ann N Y Acad Sci 1035:117–132

    CAS  PubMed  Google Scholar 

  5. Rodríguez MJ, Pugliese M, Mahy N (2009) Drug abuse, brain calcification and glutamate-induced neurodegeneration. Current Drug Abuse Rev 2:99–112

    Google Scholar 

  6. Farber NB, Olney JW (2003) Drugs of abuse that cause developing neurons to commit suicide. Dev Brain Res 147:37–45

    CAS  Google Scholar 

  7. Büttner A (2014) The neuropathology of drug abuse. In: The effects of drug abuse on the human nervous system. Elsevier, Amsterdam, pp 169–202

    Google Scholar 

  8. Lassmann H, van Horssen J (2011) The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett 585:3715–3723

    CAS  PubMed  Google Scholar 

  9. Muchowski PJ, Wacker JL (2005) Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci 6:11

    CAS  PubMed  Google Scholar 

  10. Bertram L, Tanzi RE (2005) The genetic epidemiology of neurodegenerative disease. J Clin Investig 115:1449–1457

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Yates D (2012) Neurodegenerative disease: neurodegenerative networking. Nat Rev Neurosci 13:288

    CAS  PubMed  Google Scholar 

  12. Floyd RA, Hensley K (2002) Oxidative stress in brain aging: implications for therapeutics of neurodegenerative diseases. Neurobiol Aging 23:795–807

    CAS  PubMed  Google Scholar 

  13. Amor S, Puentes F, Baker D, Van Der Valk P (2010) Inflammation in neurodegenerative diseases. Immunology 129:154–169

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Griffin WST (2006) Inflammation and neurodegenerative diseases. Am J Clin Nutr 83:470S–474S

    CAS  PubMed  Google Scholar 

  15. Friedlander RM (2003) Apoptosis and caspases in neurodegenerative diseases. N Engl J Med 348:1365–1375

    CAS  PubMed  Google Scholar 

  16. Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nat Rev Mol Cell Biol 1:120

    CAS  PubMed  Google Scholar 

  17. Radi E, Formichi P, Battisti C, Federico A (2014) Apoptosis and oxidative stress in neurodegenerative diseases. J Alzheimer's Dis 42:S125–S152

    Google Scholar 

  18. Ekshyyan O, Aw TY (2004) Apoptosis: a key in neurodegenerative disorders. Curr Neurovasc Res 1:355–371

    CAS  PubMed  Google Scholar 

  19. Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787

    CAS  PubMed  Google Scholar 

  20. Burté F, Carelli V, Chinnery PF, Yu-Wai-Man P (2015) Disturbed mitochondrial dynamics and neurodegenerative disorders. Nat Rev Neurol 11:11

    PubMed  Google Scholar 

  21. Bhat AH, Dar KB, Anees S, Zargar MA, Masood A, Sofi MA et al (2015) Oxidative stress, mitochondrial dysfunction and neurodegenerative diseases; a mechanistic insight. Biomed Pharmacother 74:101–110

    CAS  PubMed  Google Scholar 

  22. Guo C, Sun L, Chen X, Zhang D (2013) Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res 8:2003

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Trushina E, McMurray C (2007) Oxidative stress and mitochondrial dysfunction in neurodegenerative diseases. Neuroscience 145:1233–1248

    CAS  PubMed  Google Scholar 

  24. Deslauriers AM, Afkhami-Goli A, Paul AM, Bhat RK, Acharjee S, Ellestad KK et al (2011) Neuroinflammation and endoplasmic reticulum stress are coregulated by crocin to prevent demyelination and neurodegeneration. J Immunol 187:4788–4799

    CAS  PubMed  Google Scholar 

  25. Farkhondeh T, Samarghandian S, Yazdi HS, Samini F (2018) The protective effects of crocin in the management of neurodegenerative diseases: a review. Am J Neurodegen Dis 7:1

    Google Scholar 

  26. Kim H (2005) Neuroprotective herbs for stroke therapy in traditional eastern medicine. Neurol Res 27:287–301

    PubMed  Google Scholar 

  27. Kumar GP, Khanum F (2012) Neuroprotective potential of phytochemicals. Pharmacogn Rev 6:81

    PubMed  PubMed Central  Google Scholar 

  28. Hosseinzadeh H, Talebzadeh F (2005) Anticonvulsant evaluation of safranal and crocin from Crocus sativus in mice. Fitoterapia 76:722–724

    CAS  PubMed  Google Scholar 

  29. Lee J, Kim C-H, Simon DK, Aminova LR, Andreyev AY, Kushnareva YE et al (2005) Mitochondrial cyclic AMP response element-binding protein (CREB) mediates mitochondrial gene expression and neuronal survival. J Biol Chem 280:40398–40401

    CAS  PubMed  Google Scholar 

  30. Yousefsani BS, Mehri S, Pourahmad J, Hosseinzadeh H (2018) Crocin prevents sub-cellular organelle damage, proteolysis and apoptosis in rat hepatocytes: a justification for its hepatoprotection (Spring 2018). Iran J Pharm Res 17(2):553

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen Y, Zhang H, Tian X, Zhao C, Cai L, Liu Y et al (2008) Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L.: a relationship investigation between antioxidant activity and crocin contents. Food Chem 109:484–492

    CAS  Google Scholar 

  32. Khalili M, Roghani M, Ekhlasi M (2010) The effect of aqueous Crocus sativus L. extract on intracerebroventricular streptozotocin-induced cognitive deficits in rat: a behavioral analysis. Iran J Pharm Res 8:185–191

    Google Scholar 

  33. Singla RK, Bhat G (2011) Crocin: an overview. Indo Glob J Pharm Sci 1:281–286

    CAS  Google Scholar 

  34. Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: a comprehensive review. Food Chem Toxicol 64:65–80

    CAS  PubMed  Google Scholar 

  35. Nam KN, Park Y-M, Jung H-J, Lee JY, Min BD, Park S-U et al (2010) Anti-inflammatory effects of crocin and crocetin in rat brain microglial cells. Eur J Pharmacol 648:110–116

    CAS  PubMed  Google Scholar 

  36. Sarshoori JR, Asadi MH, Mohammadi MT (2014) Neuroprotective effects of crocin on the histopathological alterations following brain ischemia-reperfusion injury in rat. Iran J Basic Med Sci 17:895

    PubMed  PubMed Central  Google Scholar 

  37. Soeda S, Ochiai T, Shimeno H, Saito H, Abe K, Tanaka H et al (2007) Pharmacological activities of crocin in saffron. J Nat Med 61:102–111

    CAS  Google Scholar 

  38. Wang K, Zhang L, Rao W, Su N, Hui H, Wang L et al (2015) Neuroprotective effects of crocin against traumatic brain injury in mice: involvement of notch signaling pathway. Neurosci Lett 591:53–58

    CAS  PubMed  Google Scholar 

  39. Qi Y, Chen L, Zhang L, Liu W-B, Chen X-Y, Yang X-G (2013) Crocin prevents retinal ischaemia/reperfusion injury-induced apoptosis in retinal ganglion cells through the PI3K/AKT signalling pathway. Exp Eye Res 107:44–51

    CAS  PubMed  Google Scholar 

  40. Heidari S, Mehri S, Hosseinzadeh H (2017) Memory enhancement and protective effects of crocin against D-galactose aging model in the hippocampus of Wistar rats. Iran J Basic Med Sci 20:1250

    PubMed  PubMed Central  Google Scholar 

  41. Bandegi AR, Rashidy-Pour A, Vafaei AA, Ghadrdoost B (2014) Protective effects of Crocus sativus L. extract and crocin against chronic-stress induced oxidative damage of brain, liver and kidneys in rats. Adv Pharm Bull 4:493

    PubMed  PubMed Central  Google Scholar 

  42. Zhang X-y, Zhang X-j, Xv J, Jia W, Pu X-y, Wang H-y et al (2018) Crocin attenuates acute hypobaric hypoxia-induced cognitive deficits of rats. Eur J Pharmacol 818:300–305

    CAS  PubMed  Google Scholar 

  43. Akbari-Fakhrabadi M, Najafi M, Mortazavian S, Rasouli M, Memari AH, Shidfar F (2019) Effect of saffron (Crocus sativus L.) and endurance training on mitochondrial biogenesis, endurance capacity, inflammation, antioxidant, and metabolic biomarkers in Wistar rats. J Food Biochem 43:e12946

    PubMed  Google Scholar 

  44. Chen L, Qi Y, Yang X (2015) Neuroprotective effects of crocin against oxidative stress induced by ischemia/reperfusion injury in rat retina. Ophthalmic Res 54:157–168

    CAS  PubMed  Google Scholar 

  45. Srivastava R, Ahmed H, Dixit R (2010) Crocus sativus L.: a comprehensive review. Pharmacogn Rev 4:200

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Bostan HB, Mehri S, Hosseinzadeh H (2017) Toxicology effects of saffron and its constituents: a review. Iran J Basic Med Sci 20:110

    PubMed  PubMed Central  Google Scholar 

  47. Andersen JK (2004) Oxidative stress in neurodegeneration: cause or consequence? Nat Med 10:S18

    PubMed  Google Scholar 

  48. Schulz JB, Lindenau J, Seyfried J, Dichgans J (2000) Glutathione, oxidative stress and neurodegeneration. Eur J Biochem 267:4904–4911

    CAS  PubMed  Google Scholar 

  49. Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97:1634–1658

    CAS  PubMed  Google Scholar 

  50. Federico A, Cardaioli E, Da Pozzo P, Formichi P, Gallus GN, Radi E (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322:254–262

    CAS  PubMed  Google Scholar 

  51. Shukla V, Mishra SK, Pant HC (2011) Oxidative stress in neurodegeneration. Adv Pharmacol Sci. https://doi.org/10.1155/2011/572634

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sultana R, Perluigi M, Butterfield DA (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157–169

    CAS  PubMed  Google Scholar 

  53. Reed TT (2011) Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med 51:1302–1319

    CAS  PubMed  Google Scholar 

  54. Arlt S, Beisiegel U, Kontush A (2002) Lipid peroxidation in neurodegeneration: new insights into Alzheimer's disease. Curr Opin Lipidol 13:289–294

    CAS  PubMed  Google Scholar 

  55. Farooqui AA, Ong W-Y, Horrocks LA (2004) Biochemical aspects of neurodegeneration in human brain: involvement of neural membrane phospholipids and phospholipases A 2. Neurochem Res 29:1961–1977

    CAS  PubMed  Google Scholar 

  56. Barnham KJ, Masters CL, Bush AI (2004) Neurodegenerative diseases and oxidative stress. Nat Rev Drug Discovery 3:205

    CAS  PubMed  Google Scholar 

  57. Johnson WM, Wilson-Delfosse AL, Mieyal J (2012) Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4:1399–1440

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Sabens Liedhegner EA, Gao X-H, Mieyal JJ (2012) Mechanisms of altered redox regulation in neurodegenerative diseases—focus on S-glutathionylation. Antioxid Redox Signal 16:543–566

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Bailey SM, Patel VB, Young TA, Asayama K, Cunningham CC (2001) Chronic ethanol consumption alters the glutathione/glutathione peroxidase-1 system and protein oxidation status in rat liver. Alcohol Clin Exp Res 25:726–733

    CAS  PubMed  Google Scholar 

  60. Lin S-C, Lin C-H, Lin C-C, Lin Y-H, Chen C-F, Chen I-C et al (2002) Hepatoprotective effects of Arctium lappa Linne on liver injuries induced by chronic ethanol consumption and potentiated by carbon tetrachloride. J Biomed Sci 9:401–409

    PubMed  Google Scholar 

  61. Yuan L, Kaplowitz N (2009) Glutathione in liver diseases and hepatotoxicity. Mol Aspects Med 30:29–41

    CAS  PubMed  Google Scholar 

  62. Lee TD, Sadda MR, Mendler MH, Bottiglieri T, Kanel G, Mato JM et al (2004) Abnormal hepatic methionine and glutathione metabolism in patients with alcoholic hepatitis. Alcohol Clin Exp Res 28:173–181

    CAS  PubMed  Google Scholar 

  63. Klein JA, Ackerman SL (2003) Oxidative stress, cell cycle, and neurodegeneration. J Clin Investig 111:785–793

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Ruszkiewicz J, Albrecht J (2015) Changes in the mitochondrial antioxidant systems in neurodegenerative diseases and acute brain disorders. Neurochem Int 88:66–72

    CAS  PubMed  Google Scholar 

  65. Mattson MP (2007) Calcium and neurodegeneration. Aging Cell 6:337–350

    CAS  PubMed  Google Scholar 

  66. Cruz R, Almaguer WM, Bergado JR (2003) Glutathione in cognitive function and neurodegeneration. Revista de Neurologia 36:877–886

    CAS  PubMed  Google Scholar 

  67. Cardoso BR, Hare DJ, Bush AI, Roberts BR (2017) Glutathione peroxidase 4: a new player in neurodegeneration? Mol Psychiatry 22:328–335

    CAS  PubMed  Google Scholar 

  68. Aoyama K, Nakaki T (2013) Impaired glutathione synthesis in neurodegeneration. Int J Mol Sci 14:21021–21044

    PubMed  PubMed Central  Google Scholar 

  69. Jóhannesson T, Kristinsson J, Snaedal J (2003) Neurodegenerative diseases, antioxidative enzymes and copper. A review of experimental research. Laeknabladid 89:659–671

    PubMed  Google Scholar 

  70. Sánchez-Valle V, Chavez-Tapia NC, Uribe M, Méndez-Sánchez N (2012) Role of oxidative stress and molecular changes in liver fibrosis: a review. Curr Med Chem 19:4850–4860

    PubMed  Google Scholar 

  71. Han D, Hanawa N, Saberi B, Kaplowitz N (2006) Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol-Gastrointest Liver Physiol 291:G1–G7

    CAS  PubMed  Google Scholar 

  72. Zeviani M, Carelli V (2007) Mitochondrial disorders. Curr Opin Neurol 20:564–571

    CAS  PubMed  Google Scholar 

  73. Mancuso M, Coppede F, Migliore L, Siciliano G, Murri L (2006) Mitochondrial dysfunction, oxidative stress and neurodegeneration. J Alzheimer's Dis 10:59–73

    CAS  Google Scholar 

  74. Lezi E, Swerdlow RH (2012) Mitochondria in neurodegeneration. In: Advances in mitochondrial medicine. Springer, Boston, pp 269–286

    Google Scholar 

  75. Jellinger KA (2010) Basic mechanisms of neurodegeneration: a critical update. J Cell Mol Med 14:457–487

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Orth M, Schapira A (2001) Mitochondria and degenerative disorders. Am J Med Genet 106:27–36

    CAS  PubMed  Google Scholar 

  77. Johri A, Beal MF (2012) Mitochondrial dysfunction in neurodegenerative diseases. J Pharmacol Exp Ther 342:619–630

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Itoh K, Nakamura K, Iijima M, Sesaki H (2013) Mitochondrial dynamics in neurodegeneration. Trends Cell Biol 23:64–71

    CAS  PubMed  Google Scholar 

  79. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O et al (2011) Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 69:481–492

    CAS  PubMed  Google Scholar 

  80. Reeve AK, Krishnan KJ, Turnbull D (2008) Mitochondrial DNA mutations in disease, aging, and neurodegeneration. Ann N Y Acad Sci 1147:21–29

    CAS  PubMed  Google Scholar 

  81. Knott AB, Perkins G, Schwarzenbacher R, Bossy-Wetzel E (2008) Mitochondrial fragmentation in neurodegeneration. Nat Rev Neurosci 9:505

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Prieto M, Vázquez JA, Murado M (2015) Crocin bleaching antioxidant assay revisited: application to microplate to analyse antioxidant and pro-oxidant activities. Food Chem 167:299–310

    CAS  PubMed  Google Scholar 

  83. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F et al (2011) Protective effects of saffron extract and its active constituent crocin against oxidative stress and spatial learning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 667:222–229

    CAS  PubMed  Google Scholar 

  84. Motaghinejad M, Safari S, Feizipour S, Sadr S (2019) Crocin may be useful to prevent or treatment of alcohol induced neurodegeneration and neurobehavioral sequels via modulation of CREB/BDNF and Akt/GSK signaling pathway. Med Hypotheses 124:21–25

    CAS  PubMed  Google Scholar 

  85. Thushara R, Hemshekhar M, Santhosh MS, Jnaneshwari S, Nayaka S, Naveen S et al (2013) Crocin, a dietary additive protects platelets from oxidative stress-induced apoptosis and inhibits platelet aggregation. Mol Cell Biochem 373:73–83

    CAS  PubMed  Google Scholar 

  86. Assimopoulou A, Sinakos Z, Papageorgiou V (2005) Radical scavenging activity of Crocus sativus L. extract and its bioactive constituents. Phytother Res 19:997–1000

    CAS  PubMed  Google Scholar 

  87. Mehri S, Abnous K, Mousavi SH, Shariaty VM, Hosseinzadeh H (2012) Neuroprotective effect of crocin on acrylamide-induced cytotoxicity in PC12 cells. Cell Mol Neurobiol 32:227–235

    CAS  PubMed  Google Scholar 

  88. Mehri S, Abnous K, Khooei A, Mousavi SH, Shariaty VM, Hosseinzadeh H (2015) Crocin reduced acrylamide-induced neurotoxicity in Wistar rat through inhibition of oxidative stress. Iran J Basic Med Sci 18:902

    PubMed  PubMed Central  Google Scholar 

  89. Mousavi SH, Tayarani N, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30:185–191

    CAS  PubMed  Google Scholar 

  90. Hosseinzadeh H, Shamsaie F, Mehri S (2009) Antioxidant activity of aqueous and ethanolic extracts of Crocus sativus L. stigma and its bioactive constituents, crocin and safranal. Pharmacogn Mag 5:419

    Google Scholar 

  91. Hosseinzadeh H, Modaghegh MH, Saffari Z (2009) Crocus sativus L. (Saffron) extract and its active constituents (crocin and safranal) on ischemia-reperfusion in rat skeletal muscle. Evid-Based Complement Altern Med 6:343–350

    Google Scholar 

  92. Hosseinzadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty VS, Mohajeri SA (2012) Effects of saffron (Crocus sativus L.) and its active constituent, crocin, on recognition and spatial memory after chronic cerebral hypoperfusion in rats. Phytother Res 26:381–386

    CAS  PubMed  Google Scholar 

  93. Ochiai T, Soeda S, Ohno S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of PC-12 cells through sphingomyelinase-ceramide signaling by increasing glutathione synthesis. Neurochem Int 44:321–330

    CAS  PubMed  Google Scholar 

  94. Mohammadzadeh L, Hosseinzadeh H, Abnous K, Razavi BM (2018) Neuroprotective potential of crocin against malathion-induced motor deficit and neurochemical alterations in rats. Environ Sci Pollut Res 25:4904–4914

    CAS  Google Scholar 

  95. Tundis R, Loizzo MR, Nabavi SM, Orhan IE, Skalicka-Woźniak K, D’Onofrio G et al (2018) Natural compounds and their derivatives as multifunctional agents for the treatment of Alzheimer disease. In: Discovery and development of neuroprotective agents from natural products. Elsevier, Amsterdam, pp 63–102

    Google Scholar 

  96. Soeda S, Ochiai T, Paopong L, Tanaka H, Shoyama Y, Shimeno H (2001) Crocin suppresses tumor necrosis factor-α-induced cell death of neuronally differentiated PC-12 cells. Life Sci 69:2887–2898

    CAS  PubMed  Google Scholar 

  97. Zheng Y-Q, Liu J-X, Wang J-N, Xu L (2007) Effects of crocin on reperfusion-induced oxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94

    CAS  PubMed  Google Scholar 

  98. Soeda S, Aritake K, Urade Y, Sato H, Shoyama Y (2016) Neuroprotective activities of saffron and crocin. In: The benefits of natural products for neurodegenerative diseases. Springer, Boston, pp 275–292

    Google Scholar 

  99. Rajaei Z, Hosseini M, Alaei H (2016) Effects of crocin on brain oxidative damage and aversive memory in a 6-OHDA model of Parkinson’s disease. Arq Neuropsiquiatr 74:723–729

    CAS  PubMed  Google Scholar 

  100. Oruc S, Gönül Y, Tunay K, Oruc OA, Bozkurt MF, Karavelioğlu E et al (2016) The antioxidant and antiapoptotic effects of crocin pretreatment on global cerebral ischemia reperfusion injury induced by four vessels occlusion in rats. Life Sci 154:79–86

    CAS  PubMed  Google Scholar 

  101. Meamarbashi A, Rajabi A (2016) Potential ergogenic effects of saffron. J Diet Suppl 13:522–529

    CAS  PubMed  Google Scholar 

  102. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett 362:61–64

    CAS  PubMed  Google Scholar 

  103. Korani S, Korani M, Sathyapalan T, Sahebkar A (2019) Therapeutic effects of crocin in autoimmune diseases: a review. BioFactors 45(6):835–843

    CAS  PubMed  Google Scholar 

  104. Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH (2010) Mechanisms underlying inflammation in neurodegeneration. Cell 140:918–934

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Perry VH, Cunningham C, Holmes C (2007) Systemic infections and inflammation affect chronic neurodegeneration. Nat Rev Immunol 7:161

    CAS  PubMed  Google Scholar 

  106. Hennessy E, Griffin ÉW, Cunningham C (2015) Astrocytes are primed by chronic neurodegeneration to produce exaggerated chemokine and cell infiltration responses to acute stimulation with the cytokines IL-1β and TNFα. J Neurosci 35:8411–8422

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Murray CL, Skelly DT, Cunningham C (2011) Exacerbation of CNS inflammation and neurodegeneration by systemic LPS treatment is independent of circulating IL-1β and IL-6. J Neuroinflamm 8:50

    CAS  Google Scholar 

  108. Allan SM, Rothwell NJ (2001) Cytokines and acute neurodegeneration. Nat Rev Neurosci 2:734

    CAS  PubMed  Google Scholar 

  109. Ramesh G, MacLean AG, Philipp MT (2013) Cytokines and chemokines at the crossroads of neuroinflammation, neurodegeneration, and neuropathic pain. Mediat Inflamm. https://doi.org/10.1155/2013/480739

    Article  Google Scholar 

  110. Olson L, Humpel C (2010) Growth factors and cytokines/chemokines as surrogate biomarkers in cerebrospinal fluid and blood for diagnosing Alzheimer’s disease and mild cognitive impairment. Exp Gerontol 45:41–46

    CAS  PubMed  Google Scholar 

  111. Joo J, Lee M, Bae S, An SSA (2013) Blood biomarkers: from nanotoxicity to neurodegeneration. SPIE Newsroom

  112. Kempuraj D, Thangavel R, Natteru P, Selvakumar G, Saeed D, Zahoor H et al (2016) Neuroinflammation induces neurodegeneration. J Neurol Neurosurg Spine 1:1003

    PubMed  PubMed Central  Google Scholar 

  113. Lull ME, Block ML (2010) Microglial activation and chronic neurodegeneration. Neurotherapeutics 7:354–365

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Wyss-Coray T, Mucke L (2002) Inflammation in neurodegenerative disease—a double-edged sword. Neuron 35:419–432

    CAS  PubMed  Google Scholar 

  115. Schwartz M, Shechter R (2010) Systemic inflammatory cells fight off neurodegenerative disease. Nat Rev Neurol 6:405

    CAS  PubMed  Google Scholar 

  116. Brown GC, Bal-Price A (2003) Inflammatory neurodegeneration mediated by nitric oxide, glutamate, and mitochondria. Mol Neurobiol 27:325–355

    CAS  PubMed  Google Scholar 

  117. Witte ME, Geurts JJ, de Vries HE, van der Valk P, van Horssen J (2010) Mitochondrial dysfunction: a potential link between neuroinflammation and neurodegeneration? Mitochondrion 10:411–418

    CAS  PubMed  Google Scholar 

  118. Di Filippo M, Chiasserini D, Tozzi A, Picconi B, Calabresi P (2010) Mitochondria and the link between neuroinflammation and neurodegeneration. J Alzheimer's Dis 20:S369–S379

    Google Scholar 

  119. Vodret S, Bortolussi G, Jašprová J, Vitek L, Muro AF (2017) Inflammatory signature of cerebellar neurodegeneration during neonatal hyperbilirubinemia in Ugt1-/-mouse model. J Neuroinflamm 14:64

    Google Scholar 

  120. Escudero-Lourdes C (2016) Toxicity mechanisms of arsenic that are shared with neurodegenerative diseases and cognitive impairment: role of oxidative stress and inflammatory responses. Neurotoxicology 53:223–235

    CAS  PubMed  Google Scholar 

  121. Sun B, Karin M (2008) NF-κB signaling, liver disease and hepatoprotective agents. Oncogene 27:6228

    CAS  PubMed  Google Scholar 

  122. Gh Popescu BF, Nichol H (2011) Mapping brain metals to evaluate therapies for neurodegenerative disease. CNS Neurosci Ther 17:256–268

    Google Scholar 

  123. Zhang L, Previn R, Lu L, Liao R-F, Jin Y, Wang R-K (2018) Crocin, a natural product attenuates lipopolysaccharide-induced anxiety and depressive-like behaviors through suppressing NF-kB and NLRP3 signaling pathway. Brain Res Bull 142:352–359

    CAS  PubMed  Google Scholar 

  124. Li X, Jiang C, Zhu W (2017) Crocin reduces the inflammation response in rheumatoid arthritis. Biosci Biotechnol Biochem 81:891–898

    CAS  PubMed  Google Scholar 

  125. Iwasaki A, Medzhitov R (2010) Regulation of adaptive immunity by the innate immune system. Science 327:291–295

    CAS  PubMed  PubMed Central  Google Scholar 

  126. Amor S, Woodroofe MN (2014) Innate and adaptive immune responses in neurodegeneration and repair. Immunology 141:287–291

    CAS  PubMed  PubMed Central  Google Scholar 

  127. Pashirzad M, Shafiee M, Avan A, Ryzhikov M, Fiuji H, Bahreyni A et al (2019) Therapeutic potency of crocin in the treatment of inflammatory diseases: current status and perspective. J Cell Physiol 234(9):14601–14611

    CAS  Google Scholar 

  128. Li S, Liu X, Lei J, Yang J, Tian P, Gao Y (2017) Crocin protects podocytes against oxidative stress and inflammation induced by high glucose through inhibition of NF-κB. Cell Physiol Biochem 42:1481–1492

    CAS  PubMed  Google Scholar 

  129. Mazumder AG, Sharma P, Patial V, Singh D (2017) Crocin attenuates kindling development and associated cognitive impairments in mice via inhibiting reactive oxygen species-mediated NF-κB activation. Basic Clin Pharmacol Toxicol 120:426–433

    CAS  PubMed  Google Scholar 

  130. Lv B, Chen T, Xu Z, Huo F, Wei Y, Yang X (2016) Crocin protects retinal ganglion cells against H2O2-induced damage through the mitochondrial pathway and activation of NF-κB. Int J Mol Med 37:225–232

    CAS  PubMed  Google Scholar 

  131. Zhang G-F, Zhang Y, Zhao G (2015) Crocin protects PC12 cells against MPP+-induced injury through inhibition of mitochondrial dysfunction and ER stress. Neurochem Int 89:101–110

    CAS  PubMed  Google Scholar 

  132. Okouchi M, Ekshyyan O, Maracine M, Aw TY (2007) Neuronal apoptosis in neurodegeneration. Antioxid Redox Signal 9:1059–1096

    CAS  PubMed  Google Scholar 

  133. Nakajima W, Ishida A, Lange MS, Gabrielson KL, Wilson MA, Martin LJ et al (2000) Apoptosis has a prolonged role in the neurodegeneration after hypoxic ischemia in the newborn rat. J Neurosci 20:7994–8004

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Coyle JT, Puttfarcken P (1993) Oxidative stress, glutamate, and neurodegenerative disorders. Science 262:689–695

    CAS  PubMed  Google Scholar 

  135. Cho D-H, Nakamura T, Lipton SA (2010) Mitochondrial dynamics in cell death and neurodegeneration. Cell Mol Life Sci 67:3435–3447

    CAS  PubMed  Google Scholar 

  136. Artal-Sanz M, Tavernarakis N (2005) Proteolytic mechanisms in necrotic cell death and neurodegeneration. FEBS Lett 579:3287–3296

    CAS  PubMed  Google Scholar 

  137. Turner C, Schapira AH (2001) Mitochondrial dysfunction in neurodegenerative disorders and ageing. In: Neuropathology and genetics of dementia. Springer, Boston, pp 229–251

    Google Scholar 

  138. Conrad M, Schick J, Angeli JPF (2013) Glutathione and thioredoxin dependent systems in neurodegenerative disease: what can be learned from reverse genetics in mice. Neurochem Int 62:738–749

    CAS  PubMed  Google Scholar 

  139. Eldadah BA, Faden AI (2000) Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma 17:811–829

    CAS  PubMed  Google Scholar 

  140. Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885

    CAS  PubMed  Google Scholar 

  141. Mattson MP (2006) Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 8:1997–2006

    CAS  PubMed  Google Scholar 

  142. Akhtar RS, Ness JM, Roth KA (2004) Bcl-2 family regulation of neuronal development and neurodegeneration. Biochimica et Biophysica Acta (BBA) 1644:189–203

    CAS  Google Scholar 

  143. Shacka JJ, Roth KA (2005) Regulation of neuronal cell death and neurodegeneration by members of the Bcl-2 family: therapeutic implications. Curr Drug Targets-CNS Neurol Disord 4:25–39

    CAS  PubMed  Google Scholar 

  144. Luo X-G, Ding J-Q, Chen S-D (2010) Microglia in the aging brain: relevance to neurodegeneration. Mol Neurodegen 5:12

    Google Scholar 

  145. Breydo L, Redington J, Uversky V (2017) Effects of intrinsic and extrinsic factors on aggregation of physiologically important intrinsically disordered proteins. Int Rev Cell Mol Biol 329:145–185

    CAS  PubMed  Google Scholar 

  146. Kruman II, Wersto RP, Cardozo-Pelaez F, Smilenov L, Chan SL, Chrest FJ et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41:549–561

    CAS  PubMed  Google Scholar 

  147. Yang J-L, Weissman L, Bohr VA, Mattson MP (2008) Mitochondrial DNA damage and repair in neurodegenerative disorders. DNA Repair 7:1110–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Ahel I, Rass U, El-Khamisy SF, Katyal S, Clements PM, McKinnon PJ et al (2006) The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 443:713

    CAS  PubMed  Google Scholar 

  149. Brasnjevic I, Hof PR, Steinbusch HW, Schmitz C (2008) Accumulation of nuclear DNA damage or neuron loss: molecular basis for a new approach to understanding selective neuronal vulnerability in neurodegenerative diseases. DNA Repair 7:1087–1097

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Wright AF, Jacobson SG, Cideciyan AV, Roman AJ, Shu X, Vlachantoni D et al (2004) Lifespan and mitochondrial control of neurodegeneration. Nat Genet 36:1153

    CAS  PubMed  Google Scholar 

  151. Beurel E, Jope RS (2006) The paradoxical pro-and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Felderhoff-Mueser U, Sifringer M, Pesditschek S, Kuckuck H, Moysich A, Bittigau P et al (2002) Pathways leading to apoptotic neurodegeneration following trauma to the developing rat brain. Neurobiol Dis 11:231–245

    CAS  PubMed  Google Scholar 

  153. Rao RV, Bredesen DE (2004) Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Curr Opin Cell Biol 16:653–662

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Soane L, Kahraman S, Kristian T, Fiskum G (2007) Mechanisms of impaired mitochondrial energy metabolism in acute and chronic neurodegenerative disorders. J Neurosci Res 85:3407–3415

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Tabner BJ, Turnbull S, El-Aganf O, Allsop D (2001) Production of reactive oxygen species from aggregating proteins implicated in Alzheimer's disease, Parkinson's disease and other neurodegenerative diseases. Curr Top Med Chem 1:507–517

    CAS  PubMed  Google Scholar 

  156. Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    CAS  PubMed  PubMed Central  Google Scholar 

  157. Mytilineou C, Kramer BC, Yabut JA (2002) Glutathione depletion and oxidative stress. Parkinsonism Relat Disord 8:385–387

    PubMed  Google Scholar 

  158. Fontaine V, Mohand-Said S, Hanoteau N, Fuchs C, Pfizenmaier K, Eisel U (2002) Neurodegenerative and neuroprotective effects of tumor necrosis factor (TNF) in retinal ischemia: opposite roles of TNF receptor 1 and TNF receptor 2. J Neurosci 22:1–7

    Google Scholar 

  159. McCoy MK, Tansey MG (2008) TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflamm 5:45

    Google Scholar 

  160. Blasko I, Ransmayr G, Veerhuis R, Eikelenboom P, Grubeck-Loebenstein B (2001) Does IFNγ play a role in neurodegeneration? J Neuroimmunol 116:1–4

    CAS  PubMed  Google Scholar 

  161. Huang Z, Xu J, Huang X, Sun G, Jiang R, Wu H et al (2019) Crocin induces anti-ischemia in middle cerebral artery occlusion rats and inhibits autophagy by regulating the mammalian target of rapamycin. Eur J Pharmacol 857:172424

    CAS  PubMed  Google Scholar 

  162. Mozaffari S, Yasuj SR, Motaghinejad M, Motevalian M, Kheiri R (2019) Crocin acting as a neuroprotective agent against methamphetamine-induced neurodegeneration via CREB-BDNF signaling pathway. Iran J Pharm Res 18:745

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Shafahi M, Vaezi G, Shajiee H, Sharafi S, Khaksari M (2018) Crocin inhibits apoptosis and astrogliosis of hippocampus neurons against methamphetamine neurotoxicity via antioxidant and anti-inflammatory mechanisms. Neurochem Res 43:2252–2259

    CAS  PubMed  Google Scholar 

  164. Hosseinzadeh H, Abootorabi A, Sadeghnia HR (2008) Protective effect of Crocus sativus stigma extract and crocin (trans-crocin 4) on methyl methanesulfonate–induced DNA damage in mice organs. DNA Cell Biol 27:657–664

    CAS  PubMed  Google Scholar 

  165. Abe K, Saito H (2000) Effects of saffron extract and its constituent crocin on learning behaviour and long-term potentiation. Phytother Res 14:149–152

    CAS  PubMed  Google Scholar 

  166. Eteqadi M, Nasehi M, Hesami TS (2017) Effect of crocin on mitochondrial biogenesis in the striatum of cholestatic male wistar rats. 1st International Congress on Biomedicine (ICB), Tehran

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luis Ulloa or Majid Motaghinejad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kermanshahi, S., Ghanavati, G., Abbasi-Mesrabadi, M. et al. Novel Neuroprotective Potential of Crocin in Neurodegenerative Disorders: An Illustrated Mechanistic Review. Neurochem Res 45, 2573–2585 (2020). https://doi.org/10.1007/s11064-020-03134-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03134-8

Keywords

Navigation