Skip to main content
Log in

Optimization of process parameters of anodic aluminium oxide using an orthogonal array technique for thermal management applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The semiconductor packaging field is evolving rapidly due to strong competition in customer demands for increased functionality and performance, further miniaturization, heightened reliability and lower costs. The lifetime reliability and sequential performance of solid-state products are mainly based on the device junction temperature (Tj). The main concerns of efficient thermal management in heat source-based electronic packages are controlling and reducing the device junction temperature and total thermal resistance (Rth). The optimization of process parameters to develop an anodic aluminium oxide nanopore (AAO-np) structure on an Al5052 alloy substrate using an electrochemical process (two-step anodization) is proposed based on the Taguchi orthogonal array (L9). The four major parameters are the electrolyte, anodization time, bath temperature, and applied voltage, which are varied at three different levels. This experiments aim to finalize suitable process parameters and their levels towards optimum Rth and Tj. The morphology of the step-wise preparation of AAO-np structure is discussed for the optimized conditions of 0.3 M oxalic acid, a 3 h anodization time, a 30 V applied voltage, and a bath at room temperature. The resulting AAO-np structure has a pore diameter of 40 to 55 nm and a height of 6 to 7 μm. This formation significantly reduces Rth by 24.58% and Tj by 24.66% for the electronic package compared to a bare Al substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A. Permal, M. Devarajan, H.L. Hung, T. Zahner, D. Lacey, K. Ibrahim, Controlled high filler loading of functionalized Al2O3-filled epoxy composites for LED thermal management. J. Mater. Eng. Perform. 27(3), 1296–1307 (2018). https://doi.org/10.1007/s11665-018-3151-y

    Article  CAS  Google Scholar 

  2. P. Anithambigai, D. Mutharasu, L.H. Huong, T. Zahner, D. Lacey, Synthesis and thermal analysis of aluminium nitride filled epoxy composites and its effective application as thermal interface material for LED applications. J. Mater. Sci. Mater. Electron. 25(11), 4814–4821 (2014). https://doi.org/10.1007/s10854-014-2238-y

    Article  CAS  Google Scholar 

  3. M.S. Idris, S. Subramani, W.M.W.A. Kamil, M. Devarajan, Synthesis of MgO thin film on aluminum and copper substrates as thermal interface materials. IEEE Trans. Electron Devices 66(3), 1450–1457 (2019). https://doi.org/10.1109/TED.2019.2895622

    Article  CAS  Google Scholar 

  4. H.C. Cheng, W.H. Chen, H.F. Cheng, Theoretical and experimental characterization of heat dissipation in a board-level microelectronic component. Appl. Therm. Eng. 28(5–6), 575–588 (2008). https://doi.org/10.1016/j.applthermaleng.2007.04.013

    Article  CAS  Google Scholar 

  5. F.P. Du et al., Enhancing the heat transfer efficiency in graphene-epoxy nanocomposites using a magnesium oxide-graphene hybrid structure. ACS Appl. Mater. Interfaces 7(26), 14397–14403 (2015). https://doi.org/10.1021/acsami.5b03196

    Article  CAS  Google Scholar 

  6. K.E. Meyer et al., Crystalline coherence length effects on the thermal conductivity of MgO thin films. J. Mater. Sci. 51(23), 10408–10417 (2016). https://doi.org/10.1007/s10853-016-0261-5

    Article  CAS  Google Scholar 

  7. A. Kamyar, K.S. Ong, R. Saidur, Effects of nanofluids on heat transfer characteristics of a two-phase closed thermosyphon. Int. J. Heat Mass Transf. 65, 610–618 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.06.046

    Article  CAS  Google Scholar 

  8. A.A. Wereszczak et al., Thermally conductive MgO-filled Epoxy molding compounds. IEEE Trans. Compon. Packag. Manuf. Technol. 3(12), 1994–2005 (2013). https://doi.org/10.1109/TCPMT.2013.2281212

    Article  CAS  Google Scholar 

  9. A. Ramar, D. Mutharasu, N. Puurnaraj, Growth of star gooseberry-like nickel–phosphorus films on aluminium as thermal interface material for light-emitting diode application. J. Mater. Sci. Mater. Electron. 30(15), 14156–14166 (2019). https://doi.org/10.1007/s10854-019-01783-2

    Article  CAS  Google Scholar 

  10. N. Tsyntsaru, Porous anodized aluminium oxide: Application outlooks. Chemija 27(1), 17–23 (2016)

    CAS  Google Scholar 

  11. H.C. Weng, M.H. Yang, Heat transfer performance enhancement of gravity heat pipes by growing aao nanotubes on inner wall surface. Inventions (2018). https://doi.org/10.3390/inventions3030042

    Article  Google Scholar 

  12. M. Sundararajan, S. Subramani, M. Devarajan, M. Jaafar, Synthesis and analysis of anodic aluminum oxide-nanopore structure on Al substrates for efficient thermal management in electronic packaging. J. Mater. Sci. Mater. Electron. (2020). https://doi.org/10.1007/s10854-020-03507-3

    Article  Google Scholar 

  13. Y. Cui, Y. Ding, S. Xu, Y. Wang, W. Rao, J. Liu, Study on heat transfer and corrosion resistance of anodized aluminum alloy in gallium-based liquid metal. J. Electron. Packag. Trans. ASME (2019). https://doi.org/10.1115/1.4041665

    Article  Google Scholar 

  14. M.K. Kushwaha, A comparative study of different electrolytes for obtaining thick and well-ordered nano-porous anodic aluminium oxide (AAO) films. Procedia Mater. Sci. 5, 1266–1273 (2014). https://doi.org/10.1016/j.mspro.2014.07.438

    Article  CAS  Google Scholar 

  15. G.E.J. Poinern, N. Ali, D. Fawcett, Progress in nano-engineered anodic aluminum oxide membrane development. Materials 4(3), 487–526 (2010)

    Article  Google Scholar 

  16. D. H. Besterfield, C. Besterfield-Michna, G.H. Besterfield, M. Besterfield-Sacre, H. Urdhwareshe, R. Urdhwarshe, Total quality management, 3rd edn. (Pearson Education India, 2011)

  17. D.C. Montgomery, Design and analysis of experiments, 8th edn. (John Wiley & Sons Inc, Hoboken, NJ, 2012)

    Google Scholar 

  18. A.A. Dar, N. Anuradha, An application of Taguchi L9 method in black scholes model for European call option. Int. J. Entrep. 22(1), 1–13 (2018)

    Google Scholar 

  19. S. Mohapatra, G.B. Nando, Chemical modification of natural rubber in the latex stage by grafting cardanol, a waste from the cashew industry and a renewable resource. Ind. Eng. Chem. Res. 52(17), 5951–5957 (2013). https://doi.org/10.1021/ie400195v

    Article  CAS  Google Scholar 

  20. Y. Ma, H. Hu, D. Northwood, X. Nie, Optimization of the electrolytic plasma oxidation processes for corrosion protection of magnesium alloy AM50 using the Taguchi method. J. Mater. Process. Technol. 182(1–3), 58–64 (2007). https://doi.org/10.1016/j.jmatprotec.2006.07.007

    Article  CAS  Google Scholar 

  21. W.J. Stepniowski, D. Zasada, Z. Bojar, First step of anodization influences the final nanopore arrangement in anodized alumina. Surf. Coatings Technol. 206(6), 1416–1422 (2011). https://doi.org/10.1016/j.surfcoat.2011.09.004

    Article  CAS  Google Scholar 

  22. C.K. Chung, C.H. Tsai, C.R. Hsu, E.H. Kuo, Y. Chen, I.C. Chung, Impurity and temperature enhanced growth behaviour of anodic aluminium oxide from AA5052 Al-Mg alloy using hybrid pulse anodization at room temperature. Corros. Sci. 125, 40–47 (2017). https://doi.org/10.1016/j.corsci.2017.05.027

    Article  CAS  Google Scholar 

  23. S. Krishna Madhavi, D. Sreeramulu, M. Venkatesh, Evaluation of optimum turning process of process parameters using DOE and PCA Taguchi method. Mater. Today Proc. 4(2), 1937–1946 (2017). https://doi.org/10.1016/j.matpr.2017.02.039

    Article  Google Scholar 

  24. S. Muralidharan, S. Balaji, M.P. Raja, Analyze and optimize the process parameters of electrochemical machining of Ti6Al4V using orthogonal array (OA8). Int. J. Eng. Trends Technol. 55(1), 16–20 (2018). https://doi.org/10.14445/22315381/ijett-v55p204

    Article  Google Scholar 

  25. S. Kamaruddin, Z.A. Khan, K.S. Wan, The use of the taguchi method in determining the optimum plastic injection moulding parameters for the production of a consumer product. J. Mek. 18, 98–110 (2004)

    Google Scholar 

  26. W. Lee, R. Ji, U. Gösele, K. Nielsch, Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat. Mater. 5(9), 741–747 (2006). https://doi.org/10.1038/nmat1717

    Article  CAS  Google Scholar 

  27. M.H. Rahimi, S. Saramad, S.H. Tabaian, S.P. Marashi, A. Zolfaghari, M. Mohammadalinezhad, Study the effect of striping in two-step anodizing process on pore arrangement of nano-porous alumina. Appl. Surf. Sci. 256(1), 12–16 (2009). https://doi.org/10.1016/j.apsusc.2009.04.155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank WDC–USM (MIDA grant) for financial assistance. In addition, the authors would like to acknowledge TMRL Laboratory–School of Physics (USM), SERC (USM) and Western Digital Corporation for providing the characterization facilities. Finally, the authors thank School of Materials and Mineral Resources Engineering for providing lab facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariatti Jaafar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sundararajan, M., Subramani, S., Devarajan, M. et al. Optimization of process parameters of anodic aluminium oxide using an orthogonal array technique for thermal management applications. J Mater Sci: Mater Electron 31, 18706–18720 (2020). https://doi.org/10.1007/s10854-020-04412-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04412-5

Navigation