Skip to main content
Log in

Effect of A-site substitution and calcination temperature in Fe3O4 spinel ferrites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, we adopted an auto-combustion method to synthesize polycrystalline magnetite (Fe3O4) and magnesium ferrites (MgFe2O4) nanoparticles. The synthesized nanoparticles were characterized using techniques such as X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), Fourier-transform infrared spectroscopy (FTIR), Vibration sample magnetometer (VSM) and photoluminescence (PL) spectroscopy. X-ray diffraction profiles of all the synthesized nanoparticles [Fe3O4 (500 °C): FO NPs, MgFe2O4 (500 °C): MFO1 NPs and MgFe2O4 (700 °C): MFO2 NPs] confirmed phase pure crystallinity without any secondary phases such as FeO and Fe2O3, etc. The implementation of Rietveld refinement determined the cubic crystal symmetry with space group \(Fd\stackrel{-}{3}m\) for all the synthesized nanoparticles. FE-SEM micrographs depicted the pseudo-spherical morphology with an average grain size of 26.18 nm, 51.6 nm, and 69.68 nm for FO NPs, MFO1 NPs, and MFO2 NPs, respectively. FTIR spectra illustrated the appearance of peaks at 1645 cm−1 and 1345 cm−1 which attributes to metal ions (Fe3+/Mg2+). Photoluminescence spectra of synthesized nanoparticles displayed the emission wavelength in a range of 508–521 nm. The values of saturation magnetization for FO NPs, MFO1 NPs, and MFO2 NPs were found to be 34.2 emu/g, 15.3 emu/g, and 28.8 emu/g, respectively. The magnetization of MgFe2O4 nanoparticles increased with increasing calcination temperature (500–700 °C) so as the grain size. It indicated that Mg substitution at A-site of AB2O4-type (MgFe2O4) spinel ferrite not only gave the phase pure crystal structure but also compete with the magnetic properties of Fe3O4 with increasing calcination temperature. MgFe2O4 nanoparticles (calcined at 700 °C) depicted superparamagnetic behavior and can be utilized as a drug delivery agent for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. S.Y. Mulushoa, M.T. Wegayehu, G.T. Aregai, N. Murali, M.S. Reddi, B.V. Babu, T. Arunamani, K. Samatha, Synthesis of spinel MgFe2O4 ferrite material and studying its structural and morphological properties using solid state method. Chem. Sci. 6, 653–661 (2017)

    CAS  Google Scholar 

  2. L. Thakur, B. Singh, History and applications of important ferrites. Int. Res. Adv. 1, 11–13 (2014)

    Google Scholar 

  3. A.U. Rashid, A. Humayun, S. Manzoor, MgFe2O4/ZrO2, composite nanoparticles for hyperthermia applications. J. Magn. Magn. 428, 333–339 (2017)

    Article  CAS  Google Scholar 

  4. J.H. Hankiewicz, J.A. Stoll, J. Stroud, J. Davidson, K.L. Livesey, K. Tvrdy, A. Roshko, S.E. Russek, K. Stupic, P. Bilski, R.E. Camley, Z.J. Celinski, Nano-sized ferrite particles for magnetic resonance imaging thermometry. J. Magn. Magn. 469, 550–557 (2019)

    Article  CAS  Google Scholar 

  5. H.S. O’neill, V.J. Wall, The olivine-orthopyroxene-spinel oxygen geobarometer, the nickel precipitation curve, and the oxygen fugacity of the earth’s upper mantle. J. Petrol. 28, 1169–1191 (1987)

    Article  Google Scholar 

  6. S.M. Antao, I. Hassan, J.B. Parise, Cation ordering in magnesioferrite, MgFe2O4, to 982 °C using in situ synchrotron X-ray powder diffraction. Am. Mineral. 90, 219–228 (2005)

    Article  CAS  Google Scholar 

  7. N.S.A. Kumar, S. Ashoka, M. Pandurangappa, MgFe2O4 nanoparticles synthesis and characterization: application to trace level mercury(II) measurement from waste water samples. Mater. Res. 6, 125049 (2019)

    Google Scholar 

  8. J.Y. Patil, D.Y. Nadargi, I.S. Mulla, S.S. Suryavanshi, Cerium doped MgFe2O4 nanocomposites: highly sensitive and fast response-recoverable acetone gas sensor. Heliyon 5, e01489 (2019)

    Article  CAS  Google Scholar 

  9. W. Liu, R. Jin, Y. Li, Y. Wu, X. Cao, S. Hu, Fabrication of hollow MgFe2O4 microspheres for high performance anode of lithium ion battery. Int. J. Electrochem. 13, 9520–9530 (2018)

    Article  CAS  Google Scholar 

  10. A. Ivanets, M. Roshchina, V. Srivastava, V. Prozorovich, T. Dontsova, S. Nahirniak, V. Pankov, A.H. Bandegharaei, H.N. Tran, M. Sillanpaa, Effect of metal ions adsorption on the efficiency of methylene blue degradation onto MgFe2O4 as Fenton-like catalysts. Colloids Surf. A 571, 17–26 (2019)

    Article  CAS  Google Scholar 

  11. H.G. Kim, P.H. Borse, J.S. Jang, E.D. Jeong, O.S. Jung, Y.J. Suh, J.S. Lee, Fabrication of CaFe2O4/MgFe2O4 bulk heterojunction for enhanced visible light photocatalysis. Chem. Commun. 39, 5889–5891 (2009)

    Article  Google Scholar 

  12. L. Lin, E. Yang, X. Qi, R. Xie, Z. Bai, S. Qin, C. Deng, W. Zhong, Positive andreverse core/shell structure CoxFe3-xO4/MoS2 and MoS2/CoxFe3-xO4 nanocomposites: selective production and outstanding electromagnetic absorption comprehensive performance. ACS Sustain. Chem. Eng. 8(1), 613–623 (2020)

    Article  Google Scholar 

  13. X. Xie, C. Ni, Z. Lin, D. Wu, X. Sun, Y. Zhang, B. Wang, W. Du, Phase and morphology evolution of high dielectric CoO/Co3O4 particles with Co3O4 nanoneedles on surface for excellent microwave absorption application. Chem. Eng. J. 396, 125205 (2020)

    Article  CAS  Google Scholar 

  14. A.S. Kamzina, H. Das, N. Wakiyad, A.A. Valiullin, Magnetic core/shell nanocomposites MgFe2O4/SiO2 for biomedical application:synthesis and properties. Phys. Solid State 60, 1752–1761 (2018)

    Article  Google Scholar 

  15. B.D. Cardoso, I.S.R. Rio, A.R.O. Rodrigues, F.C.T. Fernandes, B.G. Almeida, A. Pires, A.M. Pereira, J.P. Araújo, E.M.S. Castanheira, P.J.G. Coutinho, Magnetoliposomes containing magnesium ferrite nanoparticles as nanocarriers for the model drug curcumin. R. Soc. Open Sci. 5, 181017 (2018)

    Article  CAS  Google Scholar 

  16. X. Jing, H. Yang, W. Fu, K. Du, Y. Sui, J. Chen, Y. Zeng, M. Li, G. Zou, Preparation and magnetic properties of magnetite nanoparticles by sol–gel method. J. Magn. Magn. 309, 307–311 (2007)

    Article  Google Scholar 

  17. E.A. Chavarriaga, A.A. Lopera, V. Franco, C.P. Bergmann, J. Alarcón, Gel combustion synthesis and magnetic properties of CoFe2O4, ZnFe2O4, and MgFe2O4 using 6-aminohexanoic acid as a new fuel. J. Magn. Magn. 497, 166054 (2020)

    Article  CAS  Google Scholar 

  18. B. Aslibeiki, G. Varvaro, D. Peddis, P. Kameli, Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J. Magn. Magn. 422, 7–12 (2017)

    Article  CAS  Google Scholar 

  19. J.F.D. Carvalho, S.N.D. Medeiros, M.A. Morales, A.L. Dantas, A.S. Carriço, Synthesis of magnetite nanoparticles by high energy ball milling. Appl. Surf. Sci. 275, 84–87 (2013)

    Article  Google Scholar 

  20. D. Peng, S. Beysen, Q. Li, J. Jian, Y. Sun, J. Jiwuer, Hydrothermal growth of octahedral Fe3O4 crystals. Particuology. 7, 35–38 (2009)

    Article  CAS  Google Scholar 

  21. R.J. Carvajal, FullProf: a rietveld refinement and pattern matching analysis program laboratories leon brillouin (CEA-CNRS, Paris, 2000)

    Google Scholar 

  22. H.E. Ghandoor, H.M. Zidan, M.M. Khalil, M.I.M. Ismail, Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci. 7, 5734–5745 (2012)

    Google Scholar 

  23. C. Han, J. Lalley, N. Iyanna, M.N. Nadagouda, Removal of phosphate using calcium and magnesium-modified iron-based adsorbents. Mater. Chem. Phys. 198, 115–124 (2017)

    Article  CAS  Google Scholar 

  24. S.K. Durrani, S. Naz, K. Hayat, Thermal analysis and phase evolution of nanocrystalline perovskite oxide materials synthesized via hydrothermal and self-combustion methods. J. Therm. Anal. Calorim. 115, 1371–1380 (2014)

    Article  CAS  Google Scholar 

  25. I.P.T. Indrayana, L.A. Tjuana, M.T. Tuny, Nanostructure and optical properties of Fe3O4: effect of calcination temperature and dwelling time. J. Phys. Conf. Ser. 1341, 082044 (2019)

    Article  CAS  Google Scholar 

  26. K.B. Modi, M.C. Chhantbar, H.H. Joshi, Study of elastic behaviour of magnesium ferri aluminates. Ceram. Int. 32, 111–114 (2006)

    Article  CAS  Google Scholar 

  27. L.G. Cerda, S.M. Montemayor, Synthesis of CoFe2O4 nanoparticles embedded in a silica matrix by the citrate precursor technique. J. Magn. Magn. 294, e43–e46 (2005)

    Article  Google Scholar 

  28. G. Vaidyanathan, S. Sendhilnathan, R. Arulmurugan, Structural and magnetic properties of Co1-xZnxFe2O4 nanoparticles by co-precipitation method. J. Magn. Magn. 313, 293–299 (2007)

    Article  CAS  Google Scholar 

  29. Y. Ahn, E.J. Choi, E.H. Kim, Superparamagnetic relaxation in cobalt ferrite nanoparticles synthesized from hydroxide carbonate precursors. Rev. Adv. Mater. Sci. 5, 477–480 (2003)

    Google Scholar 

  30. J. Chandradass, A.H. Jadhav, K.H. Kim, H. Kim, Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders. J. Alloys Compd. 517, 164–169 (2012)

    Article  CAS  Google Scholar 

  31. S. Maensiri, M. Sagmanee, A. Wiengmoon, Magnesium ferrite (MgFe2O4) nanostructures fabricated by electrospinning. Nanoscale Res. Lett. 4, 221–228 (2009)

    Article  CAS  Google Scholar 

  32. N. Kaur, M. Kaur, Comparative studies on impact of synthesis methods on structural and magnetic properties of magnesium ferrite nanoparticles. Process. Appl. Ceram. 8, 137–143 (2014)

    Article  Google Scholar 

  33. R.H. Kodama, Magnetic nanoparticles. J. Magn. Magn. Mater. 200, 359–372 (1999)

    Article  CAS  Google Scholar 

  34. Z. Lv, Q. Wang, Y. Bin, L. Huang, R. Zhang, P. Zhang, M. Matsuo, Magnetic behaviors of Mg-and Zn-doped Fe3O4 nanoparticles estimated in terms of crystal domain size, dielectric response, and application of Fe3O4/carbon nanotube composites to anodes for lithium ion batteries. J. Phys. Chem. 119, 26128–26142 (2015)

    CAS  Google Scholar 

  35. V.A.F. Samson, S.B. Bernadsha, M. Mahendiran, K.L. Lawrence, J. Madhavan, M.V.A. Raj, S. Prathap, Impact of calcination temperature on structural, optical, and magnetic properties of spinel CuFe2O4 for enhancing photocatalytic activity. J. Mater. Sci. Mater. Electron. 31, 6574–6585 (2020)

    Article  CAS  Google Scholar 

  36. H.W. Wang, S.C. Kung, Crystallization of nanosized Ni-Zn ferrite powders prepared by hydrothermal method. J. Magn. Magn. Mater. 270, 230–236 (2004)

    Article  CAS  Google Scholar 

  37. S. Zahi, M. Hashim, A.R. Daud, Synthesis, magnetic properties and microstructure of Ni-Zn ferrite by sol–gel technique. J. Magn. Magn. Mater. 308, 177–182 (2007)

    Article  CAS  Google Scholar 

  38. N. Kaur, M. Kaur, Envisioning the composition effect on structural, magnetic, thermal and optical properties of mesoporous MgFe2O4-GO nanocomposites. Ceram. Int. 44, 4158–4168 (2018)

    Article  CAS  Google Scholar 

  39. K. Shetty, S.V. Lokesh, D. Rangappa, H.P. Nagaswarupa, H. Nagabhushana, K.S. Anantharaju, S.C. Prashantha, Y.S. Vidya, S.C. Sharma, Designing MgFe2O4 decorated on green mediated reduced graphene oxide sheets showing photocatalytic performance and luminescence property. Phys. B 507, 67–75 (2017)

    Article  CAS  Google Scholar 

  40. D. Shi, M.E. Sadat, A.W. Dunn, D.B. Mast, Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications. Nanoscale 7, 8209–8232 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Chitkara University, Punjab for support and institutional facilities. A special thanks to Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh, India, for characterization of materials and School of Physics & Materials Science, TIET, Patiala for providing VSM facility through DST-FIST program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjeet Singh Sandhu.

Ethics declarations

Conflict of interest

Authors hereby declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, G., Kumar, N., Chitkara, M. et al. Effect of A-site substitution and calcination temperature in Fe3O4 spinel ferrites. J Mater Sci: Mater Electron 31, 18903–18912 (2020). https://doi.org/10.1007/s10854-020-04427-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04427-y

Navigation