Skip to main content
Log in

Use of Hardness and Electrical Conductivity Testing to Evaluate Heat Damage and Sensitization in 5083-H116 Al-Mg Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Detecting heat damage and eliminating the susceptibility to sensitization of wrought 5xxx series aluminum-magnesium alloys is of practical importance for the remediation of field structures. Electrical conductivity and hardness testing were employed to provide indirect evidence to assess the microstructural evolution of 5083-H116 alloys after annealing treatment at 150, 200, 250, 300, 350, 400, and 450 °C and sensitization treatment at 175 °C for 168 h. The findings indicate a strong relationship between the hardness, electrical conductivity, and degree of sensitization (DoS). This methodology can be used as a simple guide to quickly determine whether heat damage or sensitization exists.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. R.A. Sielski, Research Needs in Aluminum Structure, Ships Offshore Struct., 2008, 3, p 57–65

    Google Scholar 

  2. M.A. Wahid, A.N. Siddiquee, and Z.A. Khan, Aluminum Alloys in Marine Construction: Characteristics, Application, and Problems from a Fabrication Viewpoint, Mar. Syst. Ocean Technol., 2020, 15, p 70–80

    Google Scholar 

  3. R.K. Gupta, R. Zhang, C.H.J. Davies, and N. Birbilis, Influence of Mg Content on the Sensitization and Corrosion of Al-xMg(-Mn) Alloys, Corrosion, 2013, 69, p 1081–1087

    CAS  Google Scholar 

  4. E.L. Huskins, B. Cao, and K.T. Ramesh, Strengthening Mechanisms in an Al-Mg Alloy, Mater. Sci. Eng. A, 2010, 527, p 1292–1298

    Google Scholar 

  5. J.C. Free, P.T. Summers, B.Y. Lattimer, and S.W. Case, Mechanical Properties of 5000 Series Aluminum Alloys Following Fire Exposure, in Proceedings of the TMS 2016: 145th Annual Meeting & Exhibition, February 14-18, 2016 (Tennessee, USA), 2016, p 657-664

  6. R.Y. Chen, H.Y. Chu, C.C. Lai, and C.T. Wu, Effects of Annealing Temperature on the Mechanical Properties and Sensitization of 5083-H116 Aluminum Alloy, Proc. Inst. Mech. Eng. Part L, 2015, 229, p 339–346

    CAS  Google Scholar 

  7. R. Zhang, Y. Zhang, Y. Yan, S. Thomas, C. Davies, and N. Birbilis, The Effect of Reversion Heat Treatment on the Degree of Sensitisation for Aluminium Alloy AA5083, Corros. Sci., 2017, 126, p 324–333

    CAS  Google Scholar 

  8. Y.K. Lin, S.H. Wang, R.Y. Chen, T.S. Hsieh, L. Tsai, and C.C. Chiang, The Effect of Heat Treatment on the Sensitized Corrosion of the 5383-H116 Al-Mg Alloy, Materials, 2017, 10, p 275

    Google Scholar 

  9. C.H. Yen, C.T. Wu, Y.H. Chen, and S.L. Lee, Effects of Annealing Temperature on Stress Corrosion Susceptibility of AA5083–H15 Alloys, J. Mater. Res., 2016, 31, p 1163–1170

    CAS  Google Scholar 

  10. P.T. Summers, Y. Chen, C.M. Rippe, B. Allen, A.P. Mouritz, S.W. Case, and B.Y. Lattimer, Overview of Aluminum Alloy Mechanical Properties During and After Fires, Fire Sci. Rev., 2015, 4, p 1–36

    CAS  Google Scholar 

  11. S. Lin, Z. Nie, H. Huang, and B. Li, Annealing Behavior of a Modified 5083 Aluminum Alloy, Mater. Des., 2010, 31, p 1607–1612

    CAS  Google Scholar 

  12. I.N.A. Oguocha, O. Adigun, and S. Yannacopoulos, Effect of Sensitization Heat Treatment on Properties of Al-Mg Alloy AA5083-H116, J. Mater. Sci., 2008, 43, p 4208–4214

    CAS  Google Scholar 

  13. F. Mazzolani, EN1999 Eurocode 9: Design of Aluminium Structures, Proceedings of the Institution of Civil Engineers-Civil Engineering, Thomas Telford Ltd, 2001, p 61-64

  14. J. Jabra, M. Romios, J. Lai, E. Lee, M. Setiawan, J. Ogren, R. Clark, T. Oppenheim, O. Es-Said, and E. Lee, The Effect of Thermal Exposure on the Mechanical Properties of 2099-T6 Die Forgings, 2099-T83 Extrusions, 7075-T7651 plate, 7085-T7452 Die Forgings, 7085-T7651 Plate, and 2397-T87 Plate Aluminum Alloys, J. Mater. Eng. Perform., 2006, 15, p 601–607

    CAS  Google Scholar 

  15. M. Popović and E. Romhanji, Characterization of Microstructural Changes in an Al-6.8wt.% Mg Alloy by Electrical Resistivity Measurements, Mater. Sci. Eng. A, 2008, 492, p 460–467

    Google Scholar 

  16. E. Mueller, L. Carney, and K. Mixson, Use of Eddy Current Conductivity and Hardness Testing to Evaluate Heat Damage in Aluminum Alloys, J. Fail. Anal. Prev., 2018, 18, p 50–54

    Google Scholar 

  17. H. Bushfield, M. Cruder, R. Farley, and J. Towers, Marine Aluminum Plate-ASTM Standard Specification B 928 and the Events Leading to its Adoption, Presented at Society of Naval Architects and Marine Engineers., October 2003, (San Francisco, CA), 2003, p 1-18

  18. N. Henry Holroyd and G.M. Scamans, Environmental Degradation of Marine Aluminum Alloys—Past, Present, and Future, Corrosion, 2015, 72, p 136–143

    Google Scholar 

  19. R. Zhang, S. Knight, R. Holtz, R. Goswami, C. Davies, and N. Birbilis, A Survey of Sensitization in 5xxx Series Aluminum Alloys, Corrosion, 2016, 72, p 144–159

    CAS  Google Scholar 

  20. S. Jain, M.L.C. Lim, J.L. Hudson, and J.R. Scully, Spreading of Intergranular Corrosion on the Surface of Sensitized Al-4.4 Mg Alloys: A General Finding, Corros. Sci., 2012, 59, p 136–147

    CAS  Google Scholar 

  21. L. Tan and T. Allen, Effect of Thermomechanical Treatment on the Corrosion of AA5083, Corros. Sci., 2010, 52, p 548–554

    CAS  Google Scholar 

  22. R. Goswami and R.L. Holtz, Transmission Electron Microscopic Investigations of Grain Boundary Beta Phase Precipitation in Al 5083 Aged at 373 K (100 C), Metall. Mater. Trans. A, 2013, 44, p 1279–1289

    CAS  Google Scholar 

  23. R.L. Holtz, P.S. Pao, R.A. Bayles, T.M. Longazel, and R. Goswami, Corrosion-Fatigue Behavior of aluminum alloy 5083–H131 sensitized at 448 K (175 C), Metall. Mater. Trans. A, 2012, 43, p 2839–2849

    CAS  Google Scholar 

  24. R. Goswami, G. Spanos, P.S. Pao, and R.L. Holtz, Microstructural Evolution and Stress Corrosion Cracking Behavior of Al-5083, Metall. Mater. Trans. A, 2011, 42, p 348–355

    CAS  Google Scholar 

  25. J. Gao and D.J. Quesnel, Enhancement of the Stress Corrosion Sensitivity of AA5083 by Heat Treatment, Metall. Mater. Trans. A, 2011, 42, p 356–364

    CAS  Google Scholar 

  26. M. Reboul and B. Baroux, Metallurgical Aspects of Corrosion Resistance of Aluminium Alloys, Mater. Corros., 2011, 62, p 215–233

    CAS  Google Scholar 

  27. G. Scamans, N. Holroyd, and C. Tuck, The Role of Magnesium Segregation in the Intergranular Stress Corrosion Cracking of Aluminium Alloys, Corros. Sci., 1987, 27, p 329–347

    CAS  Google Scholar 

  28. J.L. Searles, P.I. Gouma, and R.G. Buchheit, Stress Corrosion Cracking of Sensitized AA5083 (Al-4.5 Mg-1.0Mn), Metall. Mater. Trans. A, 2001, 32, p 2859–2867

    Google Scholar 

  29. R.H. Jones, D.R. Baer, and M.J. Danielson, Role of Mg in the Stress Corrosion Cracking of an Al-Mg Alloy, Metall. Mater. Trans. A, 2001, 32A, p 1699–1711

    CAS  Google Scholar 

  30. C.B. Crane and R.P. Gangloff, Stress Corrosion Cracking of Al-Mg alloy 5083 Sensitized at Low Temperature, Corrosion, 2016, 72(2), p 221–241

    CAS  Google Scholar 

  31. M.E. McMahon, R.L. Haines, P.J. Steiner, J.M. Schulte, S.E. Fakler, and J.T. Burns, Beta phase Distribution in Al-Mg Alloys of Varying Composition and Temper, Corros. Sci., 2020, 169, p 108618

    CAS  Google Scholar 

  32. Z.D. Harris, E.M. Dubas, D.J. Schrock, J.S.W. Locke, and J.T. Burns, Assessing the Fatigue Crack Growth Behavior of Highly Sensitized AA5456-H116 Under Cathodic Polarization, Mater. Sci. Eng. A, 2020, 792, p 139792

    CAS  Google Scholar 

  33. “Standard Test Method for Determining the Susceptibility to Intergranular Corrosion of 5XXX Series Aluminum Alloys by Mass Loss after Exposure to Nitric Acid (NAMLT Test),” ASTM G67-04, ASTM International, West Conshohocken, PA, 2004

  34. J.A. Lyndon, R.K. Gupta, M.A. Gibson, and N. Birbilis, Electrochemical Behaviour of the β-Phase Intermetallic (Mg2Al3) as a Function of pH as Relevant to Corrosion of Aluminium–Magnesium Alloys, Corros. Sci., 2013, 70, p 290–293

    CAS  Google Scholar 

  35. M.L.C. Lim, J.R. Scully, and R.G. Kelly, Intergranular Corrosion Penetration in an Al-Mg Alloy as a Function of Electrochemical and Metallurgical Conditions, Corrosion, 2012, 69, p 35–47

    Google Scholar 

  36. W. Wen, Y. Zhao, and J.G. Morris, The Effect of Mg Precipitation on the Mechanical Properties of 5xxx Aluminum Alloys, Mater. Sci. Eng. A, 2005, 392, p 136–144

    Google Scholar 

  37. Y.S. Ding, K.Y. Gao, C.J. Lin, S.P. Wen, H. Huang, X.L. Wu, Z.R. Nie, and D.J. Zhou, The Effect of Mg Content on Intergranular Corrosion of Al-Mg-Mn Alloys After Annealing, Mater. Sci. Forum, 2017, 877, p 514–521

    Google Scholar 

  38. B. Raeisinia and W.J. Poole, Electrical Resistivity Measurements: A Sensitive Tool for Studying Aluminium Alloys, Mater. Sci. Forum, 2006, 519, p 1391–1396

    Google Scholar 

  39. E. Romhanji, M. Popović, and S. Stanojević, Precipitation Processes in Al-Mg-(Mn, Cu) Type Alloy Sheets Evaluated Through Electrical Resistivity Variations, J. Nondestr. Eval., 2010, 29, p 43–48

    Google Scholar 

  40. J. Yan and A.M. Hodge, Study of β Precipitation and Layer Structure Formation in Al 5083: The Role of Dispersoids and Grain Boundaries, J. Alloys Compd., 2017, 703, p 242–250

    CAS  Google Scholar 

  41. F. Li, D. Xiang, Y. Qin, R.B. Pond, and K. Slusarski, Measurements of Degree of Sensitization (DoS) in Aluminum Alloys Using EMAT Ultrasound, Ultrasonics, 2011, 51, p 561–570

    CAS  Google Scholar 

  42. C. Chukwunonye, N.J. Jones, and G. Petculescu, Sensitization in Aluminum Alloys: Effect on Acoustic Parameters, Corrosion, 2018, 74, p 1237–1244

    CAS  Google Scholar 

  43. O. Mareschal, C. Cordier, C. Dolabdjian, and P. Finkel, Aluminum Alloy Sensitization Evaluation by Using Eddy Current Techniques Based on IGMR-Magnetometer Head, IEEE Trans. Magn., 2018, 55, p 1–4

    Google Scholar 

  44. W. Golumbfskie, K. Tran, J. Noland, R. Park, D. Stiles, G. Grogan, and C. Wong, Survey of Detection, Mitigation, and Repair Technologies to Address Problems Caused by Sensitization of Al-Mg Alloys on Navy Ships, Corrosion, 2016, 72, p 314–328

    CAS  Google Scholar 

  45. N. Birbilis, R. Zhang, M.L.C. Lim, R.K. Gupta, C.H.J. Davies, S.P. Lynch, R.G. Kelly, and J.R. Scully, Quantification of Sensitization in AA5083-H131 via Imaging Ga-Embrittled Fracture Surfaces, Corrosion, 2013, 69, p 396–402

    CAS  Google Scholar 

  46. G. Özer and A. Karaaslan, Relationship of RRA Heat Treatment with Exfoliation Corrosion, Electrical Conductivity and Microstructure of AA7075 Alloy, Mater. Corros., 2017, 68(11), p 1260–1267

    Google Scholar 

  47. G. Özer and A. Karaaslan, Effects of RRA Heat Treatment on the Exfoliation Corrosion (EXCO), Intergranular Corrosion (IGC), and Electrical Conductivity of AA7075 Alloy, Mater. Corros., 2019, 70(3), p 549–557

    Google Scholar 

  48. A.P. Sekhar, S. Nandy, K.K. Ray, and D. Das, Prediction of Aging Kinetics and Yield Strength of 6063 Alloy, J. Mater. Eng. Perform., 2019, 28(5), p 2764–2778

    CAS  Google Scholar 

  49. A.P. Sekhar and D. Das, Corrosion Behavior of Under-, Peak-, and Over-Aged 6063 Alloy: A Comparative Study, Mater. Corros., 2019, 70(11), p 2052–2063

    CAS  Google Scholar 

  50. A.P. Sekhar, A.B. Mandal, and D. Das, Mechanical Properties and Corrosion Behavior of Artificially Aged Al-Mg-Si Alloy, J. Mater. Res. Technol., 2020, 9(1), p 1005–1024

    CAS  Google Scholar 

  51. L. Kramer, M. Phillippi, W. Tack, and C. Wong, Locally Reversing Sensitization in 5xxx Aluminum Plate, J. Mater. Eng. Perform., 2012, 21, p 1025–1029

    CAS  Google Scholar 

  52. R.Y. Chen and C.C. Lai, Reversing Sensitization of Naturally Exfoliated 5456-H116 Aluminum Alloys, J. Mar. Sci. Technol., 2014, 22, p 450–454

    Google Scholar 

  53. F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, 2004, p 170–171

    Google Scholar 

  54. M. Steiner and S. Agnew, Modeling Sensitization of Al-Mg Alloys Via β-Phase Precipitation Kinetics, Scr. Mater., 2015, 102, p 55–58

    CAS  Google Scholar 

  55. S. Sarkar, M. Wells, and W. Poole, Softening Behaviour of Cold Rolled Continuous Cast and Ingot Cast Aluminum Alloy AA5754, Mater. Sci. Eng. A, 2006, 421, p 276–285

    Google Scholar 

  56. S. Nebti, D. Hamana, and G. Cizeron, Calorimetric Study of Pre-precipitation and Precipitation in Al-Mg alloy, Acta Metall. Mater., 1995, 43, p 3583–3588

    CAS  Google Scholar 

  57. N.R.M.R. Bhargava, I. Samajdar, S. Ranganathan, and M. Surappa, Role of Cold Work and SiC Reinforcements on the β′/β Precipitation in Al-10 pct Mg Alloy, Metall. Mater. Trans. A, 1998, 29, p 2835–2842

    Google Scholar 

  58. M.J. Starink and A.M. Zahra, β′ and β Precipitation in an Al-Mg Alloy Studied by DSC and TEM, Acta Mater., 1998, 46, p 3381–3397

    CAS  Google Scholar 

  59. H. Yukawa, Y. Murata, M. Morinaga, Y. Takahashi, and H. Yoshida, Heterogeneous Distributions of Magnesium Atoms Near the Precipitate in Al-Mg Based Alloys, Acta Metall. Mater., 1995, 43, p 681–688

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ren-Yu Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tzeng, YC., Lu, CY., Kaliyaperumal, K. et al. Use of Hardness and Electrical Conductivity Testing to Evaluate Heat Damage and Sensitization in 5083-H116 Al-Mg Alloys. J. of Materi Eng and Perform 29, 6239–6246 (2020). https://doi.org/10.1007/s11665-020-05105-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05105-0

Keywords

Navigation