Skip to main content
Log in

Tribological Performance and Tribofilm Evolution of TiAl Matrix Composites with Silver and Titanium Diboride at Elevated Temperatures

Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In order to understand the anti-friction and anti-wear mechanisms of silver (Ag) and titanium diboride (TiB2) at elevated temperatures, the tribological performance and tribofilm evolution of TiAl matrix composites with Ag and TiB2 (TATs) are studied from 200 to 800 °C. The results illustrate that TATs exhibit excellent friction-reducing and anti-wear properties, which are attributed to the self-adjusted synergistic effect of Ag and TiB2 in the wide temperature range. Besides, the testing temperatures have strong influence on the chemical structure and evolution of tribofilms. Within 400 °C, Ag migrates to worn surface and mixes with TiB2 to form the Ag-rich tribofilms. At 600 °C, the lubricating effect of Ag diminishes and the oxidation of TiB2 is limitation, hence there is no well-consolidated tribofilm on the worn surface. At 800 °C, Ag loses the lubricating capacity, while TiB2 completely oxidizes to form B2O3, resulting in the formation of B2O3-rich tribofilms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. X.F. Lu, J.B. Li, X.H. Chen, J.W. Qiu, Y. Wang, B. Liu, Y. Liu, M. Rashad, and F.S. Pan, Mechanical, Tribological and Electrochemical Corrosion Properties of In Situ Synthesized Al2O3/TiAl Composites, Intermetallics, 2020, 120, p 106758

    Article  CAS  Google Scholar 

  2. K. Yang, H.R. Ma, X.X. Li, and Q. He, The Analysis in In Situ Preparation, Mechanics, and Tribology of TiAl-SnAgCu/Graphene Composites, Adv. Eng. Mater., 2018, 20, p 1800719

    Article  Google Scholar 

  3. K. Yang, H.R. Ma, W.B. Zhao, X.X. Li, H.B. Lin, and Y.L. Liang, A Synergetic Effect of Silver and Carbon Nanotubes on the Tribological Behavior of TiAl-Based Composites, J. Mater. Eng. Perform., 2019, 28, p 5563–5572

    Article  CAS  Google Scholar 

  4. X.Y. Liu, Q. Shen, X.L. Shi, J.L. Zou, Y.C. Huang, A. Zhang, Z. Yan, X.B. Deng, and K. Yang, Effect of Applied Load and Sliding Speed On Tribological Behavior of TiAl-Based Self-Lubricating Composites, J. Mater. Eng. Perform., 2018, 27, p 194–201

    Article  CAS  Google Scholar 

  5. J.L. Zou, X.L. Shi, Q. Shen, K. Yang, W.Z. Zhai, and Y.C. Huang, Dry Sliding Wear of TiAl–Graphene–Silver Composite at Elevated Temperatures, J. Mater. Eng. Perform., 2017, 26, p 4615–4625

    Article  CAS  Google Scholar 

  6. X.L. Shi, Z.S. Xu, M. Wang, W.Z. Zhai, J. Yao, and S.Y. Song, Tribological Behavior of TiAl matrix Self-Lubricating Composites Containing Silver from 25 to 800 °C, Wear, 2013, 303, p 486–494

    Article  CAS  Google Scholar 

  7. X.L. Shi, J. Yao, Z.S. Xu, W.Z. Zhai, S.Y. Song, W. Mang, and Q.X. Zhang, Tribological Performance of TiAl Matrix Self-Lubricating Composites Containing Ag, Ti3SiC2 and BaF2/CaF2 Tested from Room Temperature to 600 °C, Mater. Des., 2014, 53, p 620–633

    Article  CAS  Google Scholar 

  8. Q. Shen, X.L. Shi, K. Yang, J.L. Zou, W.Z. Zhai, and Y.C. Huang, Tribological Performance of TiAl Matrix Composites Containing Silver and V2O5 Nanowires at Elevated Temperatures, RSC Adv., 2016, 6, p 56294–56302

    Article  CAS  Google Scholar 

  9. X.Y. Liu, X.L. Shi, Y.C. Huang, G.C. Lu, X.B. Deng, Z. Yan, H.Y. Zhou, Y. Chen, and B. Xue, Tribological Behavior of TiAl-Multilayer Graphene-Silver Composites at Different Sliding Speeds, Mater. Chem. Phys., 2018, 213, p 368–373

    Article  CAS  Google Scholar 

  10. Z.S. Xu, S.Y. Hua, and M. Zhan, Relationship Between the Integrity of Lubricating Film and the Tribological Behavior on TiAl-Ag Self-Lubricating Composites, J. Mater. Eng. Perform., 2017, 26, p 5795–5800

    Article  CAS  Google Scholar 

  11. P.J. Blau and C.S. Yust, Microfriction Studies of Model Self-Lubricating Surfaces, Surf. Coat. Technol., 1993, 62, p 380–387

    Article  CAS  Google Scholar 

  12. B. Xue, P.X. Jing, and W.D. Ma, Tribological Properties of NiAl Matrix Composites Filled with Serpentine Powders, J. Mater. Eng. Perform., 2017, 26, p 5816–5824

    Article  CAS  Google Scholar 

  13. P. Litwa, K. Perkowski, D. Zasada, I. Kobus, G. Konopka, T. Czujko, and R.A. Varin, A Novel Fe-Cr-Nb Matrix Composite Containing the TiB2 Neutron Absorber Synthesized by Mechanical Alloying and Final Hot Isostatic Pressing (HIP) in the Ti-Tubing, J. Alloys Compd., 2016, 25, p 425–434

    Article  Google Scholar 

  14. A. Dorri Moghadam, E. Omrani, P.L. Menezes, and P.K. Rohatgi, Effect of In-Situ Processing Parameters on the Mechanical and Tribological Properties of Self-Lubricating Hybrid Aluminum Nanocomposites, Tribol. Lett., 2016, 62, p 1–10

    Article  CAS  Google Scholar 

  15. H.Z. Niu, S.L. Xiao, F.T. Kong, C.J. Zhang, and Y.Y. Chen, Microstructure Characterization and Mechanical Properties of TiB2/TiAl In Situ Composite by Induction Skull Melting Process, Mater. Sci. Eng. A, 2012, 532, p 522–527

    CAS  Google Scholar 

  16. M. Van Meter, S. Kampe, and L. Christodoulou, Mechanical Properties of Near-γ Titanium Aluminides Reinforced with High Volume Percentages of TiB2, Scr. Mater., 1996, 34, p 1251–1256

    Article  Google Scholar 

  17. S. Shu, B. Xing, F. Qiu, S. Jin, and Q. Jiang, Comparative Study of the Compression Properties of TiAl Matrix Composites Reinforced with Nano-TiB2 and Nano-Ti5Si3 Particles, Mater. Sci. Eng. A, 2013, 560, p 596–600

    Article  CAS  Google Scholar 

  18. J. Cheng, Y. Yu, L.C. Fu, F. Li, Z.H. Qiao, J.S. Li, J. Yang, and W.M. Liu, Effect of TiB2 on Dry-Sliding Tribological Properties of TiAl Intermetallics, Tribol. Int., 2013, 62, p 91–99

    Article  CAS  Google Scholar 

  19. Z.S. Xu, J. Yao, X.L. Shi, A.M.M. Ibrahim, Y.C. Xiao, L. Chen, Q.S. Zhu, and A. Zhang, A Study of the Frictional Layer of TiAl-12Ag-5TiB2 Composite During Dry Sliding Wear, J. Mater. Eng. Perform., 2015, 24, p 2875–2884

    Article  CAS  Google Scholar 

  20. B. Xue, W.D. Ma, and Y. Liu, Friction and Wear Behavior of TiAl Matrix Composites Incorporated with Silver and Molybdenum Disulfide, J. Mater. Eng. Perform., 2018, 27, p 4176–4182

    Article  CAS  Google Scholar 

  21. L. Wang, J. Cheng, S.Y. Zhu, Y. Yu, Z.H. Qiao, J. Yang, and W.M. Liu, High Temperature Wear Behaviors of TiAl-TiB2 Composites, Tribol. Lett., 2017, 65, p 144

    Article  Google Scholar 

  22. J.H. Han, S.L. Xiao, J. Tian, Y.Y. Chen, L.J. Xu, X.P. Wang, J. Yi, H.K.S. Rahoma, Z.X. Du, and S.Z. Cao, Microstructure Characterization, Mechanical Properties and Toughening Mechanism of TiB2-Containing Conventional Cast TiAl-Based Alloy, Mater. Sci. Eng. A, 2015, 645, p 8–19

    Article  CAS  Google Scholar 

  23. J.L. Li, J. Wang, A. Kumar, H. Li, and D.S. Xiong, High Temperatures Tribological Properties of Ta-Ag Films Deposited at Various Working Pressures and Sputtering Powers, Surf. Coat. Technol., 2018, 15, p 186–197

    Google Scholar 

  24. K. Yang, H.R. Ma, S.T. Cao, X.X. Li, A.H. Li, and Z.Z. Cao, Analysis of Friction Interfaces with Sinusoidal Microchannels and the Hybrid Lubrication Mechanisms of a Tribo-Film, J. Appl. Phys., 2020, 525, p 146502

    CAS  Google Scholar 

  25. Y. Birol, High Temperature Sliding Wear Behaviour of Inconel 617 and Stellite 6 Alloys, Wear, 2010, 269, p 664–671

    Article  CAS  Google Scholar 

  26. Y.K. Han, K. Yang, P.X. Jing, B. Xue, and W.D. Ma, Mechanical and Tribological Properties of NiAl/Muscovite Composites, J. Alloys Compd., 2018, 741, p 765–774

    Article  CAS  Google Scholar 

  27. Z.S. Xu, X.L. Shi, W.Z. Zhai, J. Yao, S.Y. Song, and Q.X. Zhang, Preparation and Tribological Properties of TiAl Matrix Composites Reinforced by Multilayer Graphene, Carbon, 2014, 67, p 168–177

    Article  CAS  Google Scholar 

  28. J.J. Zhu, J.H. Qi, D.K. Guan, L. Ma, and R. Dwyer-Joyce, Tribological Behaviour of Self-Lubricating Mg matrix Composites Reinforced with Silicon Carbide and Tungsten Disulfde, Tribol. Inter., 2016, 106, p 106253

    Google Scholar 

  29. J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, and M. Barnett, The Sliding Wear Behavior of CoCrFeMnNi and AlxCoCrFeNi High Entropy Alloys at Elevated Temperatures, Wear, 2019, 428–429, p 32–44

    Article  Google Scholar 

  30. S.L. Liu, X.P. Zheng, and G.Q. Geng, The Effects of Temperature on Friction and Wear Mechanisms During Direct Press Hardening of Al-Si Coated Ultra-High Strength Steel, Wear, 2018, 15, p 149–155

    Google Scholar 

  31. K. Yang, H.R. Ma, W.B. Zhao, X.X. Li, and H. Liu, Investigation of the Preparation and Tribological Behavior of a Frictional Interface Covered with Sinusoidal Microchannels Containing SnAgCu and Ti3SiC2, Tribol. Int., 2020, 150, p 106368

    Article  CAS  Google Scholar 

  32. Z.S. Xu, X.L. Shi, M. Wang, W.Z. Zhai, J. Yao, S.Y. Song, and Q.X. Zhang, Effect of Ag and Ti3SiC2 on Tribological Properties of TiAl Matrix Self-Lubricating Composites at Room and Increased Temperatures, Tribol. Lett., 2014, 53, p 617–629

    Article  CAS  Google Scholar 

  33. Z.S. Xu, Q.X. Zhang, X.L. Shi, W.Z. Zhai, and K. Yang, Tribological Properties of TiAl Matrix Self-Lubricating Composites Containing Multilayer Graphene and Ti3SiC2 at High Temperatures, Tribol. Trans., 2015, 58, p 1131–1141

    Article  CAS  Google Scholar 

  34. Z.S. Xu, X.L. Shi, Q.X. Zhang, W.Z. Zhai, X.X. Li, J. Yao, L. Chen, Q.S. Zhu, and Y.C. Xiao, Effect of Sliding Speed and Applied Load on Dry Sliding Tribological Performance of TiAl Matrix Self-Lubricating Composites, Tribol. Lett., 2014, 55, p 393–404

    Article  CAS  Google Scholar 

  35. W.M. Liu, C.F. Ye, Q.Y. Gong, H.Z. Wang, and P. Wang, Co-Sputtered Boron-Doped Titanium Dioxide Films as Photocatalysts, Surf. Coat. Technol., 2016, 303, p 184–190

    Article  Google Scholar 

  36. N. Radhika and R. Raghu, Dry Sliding Wear Behaviour of Aluminium Al-Si12Cu/TiB2 Metal Matrix Composite Using Response Surface Methodology, Tribol. Lett., 2015, 59, p 1–9

    Article  CAS  Google Scholar 

  37. H. Torres, S. Slawik, C. Gachot, B. Prakash, and M. Rodríguez Ripol, Microstructural Design of Self-Lubricating Laser Claddings for use in High Temperature Sliding Applications, Surf. Coat. Technol., 2018, 15, p 24–34

    Article  Google Scholar 

  38. H. Cheng, Y.H. Fang, J.M. Xu, C.D. Zhu, P.Q. Dai, and S.G. Xue, Tribological Properties of Nano/Ultrafine-Grained FeCoCrNiMnAlx High-Entropy Alloys Over a Wide Range of Temperatures, J. Alloys Compd., 2020, 817, p 153305

    Article  CAS  Google Scholar 

  39. Z.S. Xu, Q.X. Zhang, X.J. Huang, R. Liu, W.Z. Zhai, K. Yang, and Q.S. Zhu, An Approximate Model for the Migration of Solid Lubricant on Metal Matrix Self-Lubricating Composites, Tribol. Int., 2016, 93, p 104–114

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Key Project for Science and Technology Plan of Henan Province [Grant No. 192102210054].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Xu, Z., Liu, Y. et al. Tribological Performance and Tribofilm Evolution of TiAl Matrix Composites with Silver and Titanium Diboride at Elevated Temperatures. J. of Materi Eng and Perform 29, 5655–5662 (2020). https://doi.org/10.1007/s11665-020-04936-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04936-1

Keywords

Navigation