Skip to main content
Log in

Genetic engineering of crops for insect resistance: An overview

  • Review
  • Published:
Journal of Biosciences Aims and scope Submit manuscript

Abstract

Phytophagous insect incidence is a serious threat for reduction of crop productivity globally. There is an estimation of one fourth of crop is being destroyed by insects annually. Indeed, the development of insect-resistant crops is a great milestone in agriculture to increase crop yield and reduce pesticide dependency. Genetic engineering facilitates development of insect resistant crops by expressing bacterial δ-endotoxins and vegetative insecticidal proteins and other plant genes like lectins, protease inhibitors, etc. In addition, RNA interference and genome editing through CRISPR Cas9 also provides new solutions for the development of insect-resistant crops. The resultant genetically modified crops showed resistance against lepidopteran, dipteran, homopteran and coleopteran insects. The insect-resistant crops have made a significant economic impact worldwide in terms of higher yield and low pesticide usage. In this review, we focus on different strategies for developing transgenics against insect pest control by expressing different insecticidal proteins in crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1

Similar content being viewed by others

References

  • Baburao TM and Sumangala B 2018 Development and molecular characterization of transgenic Pigeon pea carrying cry2Aa for pod borer resistance. J. Pharm. Phytochem. 75 1581–1585

    Google Scholar 

  • Bett B, Gollasch S, Moore A, James W, Armstrong J, Walsh T, Harding R and Higgins TJ 2017 Transgenic cowpeas (Vigna unguiculata L. Walp) expressing Bacillus thuringiensis Vip3Ba protein are protected against the Maruca pod borer (Maruca vitrata). Plant Cell Tiss. Org. Cult. 131 335–345

    CAS  Google Scholar 

  • Bharathi Y, Kumar SV, Pasalu IC, Balachandran SM, Reddy VD and Rao KV 2011 Pyramided rice lines harbouring Allium sativum (asal) and Galanthus nivalis (gna) lectin genes impart enhanced resistance against major sap-sucking pests. J. Biotechnol. 152 63–71

    CAS  PubMed  Google Scholar 

  • Bhagat YS, Bhat RS, Kolekar RM, Patil AC, Lingaraju S, Patil RV and Udikeri SS 2019 Remusatia vivipara lectin and Sclerotium rolfsii lectin interfere with the development and gall formation activity of Meloidogyne incognita in transgenic tomato. Transgenic Res. 28 299–315

    CAS  PubMed  Google Scholar 

  • Birkett MA and Pickett JA 2014 Prospects of genetic engineering for robust insect resistance. Curr. Opin. Plant Biol. 19 59–67

    CAS  PubMed  Google Scholar 

  • Boddupally D, Tamirisa S, Gundra SR, Vudem DR and Khareedu VR 2018 Expression of hybrid fusion protein (Cry1Ac: ASAL) in transgenic rice plants imparts resistance against multiple insect pests. Sci. Rep. 8 1–10

    CAS  Google Scholar 

  • Bommireddy PL, Leonard BR, Temple J, Price P, Emfinger K, Cook D and Hardke JT 2011 Field performance and seasonal efficacy profiles of transgenic cotton lines expressing Vip3A and VipCot against Helicoverpa zea (Boddie) and Heliothis virescens (F.). J. Cotton Sci. 15 251–259

    CAS  Google Scholar 

  • Carrière Y, Crickmore N and Tabashnik BE 2015 Optimizing pyramided transgenic Bt crops for sustainable pest management. Nat. Biotechnol. 33 161

    PubMed  Google Scholar 

  • Chakraborty M, Reddy PS, Mustafa G, Rajesh G, Narasu VL, Udayasuriyan V and Rana D 2016 Transgenic rice expressing the cry2AX1 gene confers resistance to multiple lepidopteran pests. Transgenic Res. 25 665–78

    CAS  PubMed  Google Scholar 

  • Chang X, Lu Z, Shen Z, Peng Y and Ye G 2017 Bitrophic and tritrophic effects of transgenic cry1Ab/cry2Aj maize on the beneficial, nontarget Harmonia axyridis (Coleoptera: Coccinellidae). Envir. Entomol. 46 1171–6

    CAS  Google Scholar 

  • Chen W, Liu C, Lu G, Cheng H, Shen Z and Wu K 2018 Effects of Vip3AcAa+ Cry1Ac cotton on midgut tissue in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Insect Sci. 18 13

    PubMed Central  Google Scholar 

  • Chougule NP, Li H, Liu S, Linz LB, Narva KE, Meade T and Bonning BC 2013 Retargeting of the Bacillus thuringiensis toxin Cyt2Aa against hemipteran insect pests. Proc. Natl. Acad. Sci. USA 110 8465–70

    CAS  PubMed  Google Scholar 

  • Das A, Ghosh P and Das S 2018 Expression of Colocasia esculenta tuber agglutinin in Indian mustard provides resistance against Lipaphis erysimi and the expressed protein is non-allergenic. Plant Cell Rep. 37 849–63

    CAS  PubMed  Google Scholar 

  • Doudna JA and Charpentier E 2014 The new frontier of genome engineering with CRISPR-Cas9. Science 346 6213

    Google Scholar 

  • Douglas AE 2018. Strategies for enhanced crop resistance to insect pests. Annu. Rev. Plant Biol. 69 637–660

    CAS  PubMed  Google Scholar 

  • Duan X, Hou Q, Liu G, Pang X, Niu Z, Wang X, Zhang Y, Li B and Liang R 2018 Expression of Pinellia pedatisecta lectin gene in transgenic wheat enhances resistance to wheat aphids. Molecules 23 748

    PubMed Central  Google Scholar 

  • Gao Y, Wu K, Gould F and Shen Z 2009 Cry2Ab tolerance response of Helicoverpa armigera (Lepidoptera: Noctuidae) populations from Cry1Ac cotton planting region. J. Econ. Entomol. 102 1217–23

    CAS  PubMed  Google Scholar 

  • Ghosh G, Ganguly S, Purohit A, Chaudhuri RK, Das S and Chakraborti D 2017 Transgenic pigeonpea events expressing Cry1Ac and Cry2Aa exhibit resistance to Helicoverpa armigera. Plant Cell Rep. 36 1037–1051

    CAS  PubMed  Google Scholar 

  • Gowda A, Rydel TJ, Wollacott AM, Brown RS, Akbar W, Clark TL, Flasinski S, Nageotte JR, Read AC, Shi X and Werner BJ 2016 A transgenic approach for controlling Lygus in cotton. Nat. Commun. 7 12213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grazziotin MA, Cabral GB, Ibrahim AB, Machado RB and Aragão FJ 2020 Expression of the Arcelin 1 gene from Phaseolus vulgaris L. in cowpea seeds (Vigna unguiculata L.) confers bruchid resistance. Ann. Appl. Biol. 176 268–274

    CAS  Google Scholar 

  • Guo Z, Sun D, Kang S, Zhou J, Gong L and Qin J 2019 CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Insect Biochem. Mol. Biol. 107 31–38

    CAS  PubMed  Google Scholar 

  • Gunasekara JM, Jayasekera GA, Perera KL and Wickramasuriya AM 2017 Development of a Sri Lankan rice variety Bg 94–1 harbouring Cry2A gene of Bacillus thuringiensis resistant to rice leaffolder [Cnaphalocrocis medinalis (Guenée)]. J. Natl. Sci. Found Sri Lanka 45 2

    Google Scholar 

  • Hussain T, Aksoy E, Çalışkan ME and Bakhsh A 2019 Transgenic potato lines expressing hairpin RNAi construct of molting-associated EcR gene exhibit enhanced resistance against Colorado potato beetle (Leptinotarsa decemlineata, Say). Transgenic Res. 28 151–64

    CAS  PubMed  Google Scholar 

  • Jadhav MS, Rathnasamy SA, Natarajan B, Duraialagaraja S and Varatharajalu U 2020 Study of expression of indigenous Bt cry2AX1 gene in T3 progeny of cotton and its efficacy against Helicoverpa armigera (Hubner). Braz. Arch. Biol. Technol. 63 https://doi.org/10.1590/1678-4324-2020180428

    Article  Google Scholar 

  • Jin L, Wang J, Guan F, Zhang J, Yu S, Liu S and Yang Y 2018 Dominant point mutation in a tetraspainin gene associated with field-evolved resistance of cotton bollworm to transgenic Bt cotton. Proc. Natl. Acad. Sci. USA 115 11760–11765

    CAS  PubMed  Google Scholar 

  • Juturu VN, Mekala GK and Kirti PB 2015 Current status of tissue culture and genetic transformation research in cotton (Gossypium spp). Plant Cell Tiss. Org. Cult. 120 813–839

    CAS  Google Scholar 

  • Katta S, Talakayala A, Reddy MK, Addepally U and Garladinne M 2020 Development of transgenic cotton (Narasimha) using triple gene cry2Ab-cry1F-cry1Ac construct conferring resistance to lepidopteran pests. J. Biosci. 45 31

    CAS  PubMed  Google Scholar 

  • Kim SY, Bengtsson T, Olsson N, Hot V, Zhu LH and Ahman I 2020 Mutations in Two Aphid-Regulated β-1, 3-Glucanase Genes by CRISPR/Cas9 Do Not Increase Barley Resistance to Rhopalosiphum padi L. Front. Plant Sci. 11 1043

    PubMed  PubMed Central  Google Scholar 

  • Khan GA, Bakhsh A, Ghazanfar M, Riazuddin S and Husnain T 2013 Development of transgenic cotton lines harboring a pesticidal gene (Cry1Ab). Emirates J. Food Agric. 25 434–442

    Google Scholar 

  • Khan GA, Bakhsha A, Riazuddin S and Husnain T 2011 Introduction of Cry1Ab gene into cotton (Gossypium hirsutum) enhances resistance against Lepidopteran pest (Helicoverpa armigera). Spanish J. Agric. Res. 1 296–302

    Google Scholar 

  • Koch MS, Ward JM, Levine SL, Baum JA, Vicini JL and Hammond BG 2015 The food and environmental safety of Bt crops. Front. Plant Sci. 6 283

    PubMed  PubMed Central  Google Scholar 

  • Koerniati S, Sukmadjaja D and Samudra IM 2020 C synthetic gene of CryIAb-CryIAc fusion to generate resistant sugarcane to shoot or stem borer. InIOP Conference Series: Earth Environ. Sci. 418 012069

    Google Scholar 

  • Kola VS, Pichili R, Padmakumari AP, Mangrauthia SK, Balachandran SM and Madhav MS 2019 Knockdown of acetylcholinesterase (AChE) gene in rice yellow stem borer, Scirpophaga incertulas (Walker) through RNA interference. Agri. Gene 11 100081

    Google Scholar 

  • Li H, Guan R, Guo H and Miao X 2015 New insights into an RNAi approach for plant defence against piercing, sucking and stem-borer insect pests. Plant Cell Environ. 38 2277–2285

    CAS  PubMed  Google Scholar 

  • Little NS, Catchot AL, Allen KC, Gore J, Musser FR, Cook DR and Luttrell RG 2017 Supplemental Control with Diamides for Heliothines1 in Bt Cotton. Southwestern Entomol. 42 15–26

    Google Scholar 

  • Mamta B and Rajam MV 2017 RNAi technology: a new platform for crop pest control. Physiol. Mol. Biol. Plants 23 487–501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamta B, Reddy KR and Rajam MV 2016 Targeting chitinase gene of Helicoverpa armigera by host-induced RNA interference confers insect resistance in tobacco and tomato. Plant Mol. Biol. 9 281–292

    Google Scholar 

  • Meade T, Narva K, Storer NP, Sheets JJ, Burton SL, Woosley AT, inventors, and Dow AgroSciences LLC, assignee 2017 Insect resistance management with combinations of Cry1Be and Cry1F proteins. US Patent 9 556 453

  • Meng F, Li Y, Zang Z, Li N, Ran R, Cao Y, Li T, Zhou Q and Li W 2017 Expression of the double‐stranded RNA of the soybean pod borer Leguminivora glycinivorella (Lepidoptera: Tortricidae) ribosomal protein P0 gene enhances the resistance of transgenic soybean plants. Pest Manag. Sci. 73 2447–2455

    CAS  PubMed  Google Scholar 

  • Mi X, Liu X, Yan H, Liang L, Zhou X, Yang J, Si H and Zhang N 2017 Expression of the Galanthus nivalis agglutinin (GNA) gene in transgenic potato plants confers resistance to aphids. Comptes Rendus Biol. 340 7–12

    Google Scholar 

  • Muddanuru T, Polumetla AK, Maddukuri L and Mulpuri S 2019 Development and evaluation of transgenic castor (Ricinus communis L.) expressing the insecticidal protein Cry1Aa of Bacillus thuringiensis against lepidopteran insect pests. Crop Protec. 119 113–25

    CAS  Google Scholar 

  • Nakasu EY, Edwards MG, Fitches E, Gatehouse JA and Gatehouse AM 2014 Transgenic plants expressing ω-ACTX-Hv1a and snowdrop lectin (GNA) fusion protein show enhanced resistance to aphids. Front. Plant Sci. 28 673

    Google Scholar 

  • Ni M, Ma W, Wang X, Gao M, Dai Y, Wei X, Zhang L, Peng Y, Chen S, Ding L and Tian Y 2017 Next-generation transgenic cotton: pyramiding RNAi and Bt counters insect resistance. Plant Biotechnol. J. 15 1204–1213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niu X, Kassa A, Hu X, Robeson J, McMahon M, Richtman NM, Steimel JP, Kernodle BM, Crane VC, Sandahl G and Ritland JL 2017 Control of western corn rootworm (Diabrotica virgifera) reproduction through plant-mediated RNA interference. Sci. Rep. 7 1–3

    Google Scholar 

  • Paul S and Das S 2020 Natural insecticidal proteins, the promising bio‑control compounds for future crop protection. Nucleus 69 https://doi.org/10.1007/s13237-020-00316-1

    Article  Google Scholar 

  • Panwar BS, Ram C, Narula RK and Kaur S 2018 Pool deconvolution approach for high-throughput gene mining from Bacillus thuringiensis. Appl. Microbiol. Biotechnol. 102 1467–1482

    CAS  PubMed  Google Scholar 

  • Qin D, Liu XY, Miceli C, Zhang Q and Wang PW 2019 Soybean plants expressing the Bacillus thuringiensis cry8-like gene show resistance to Holotrichia parallela. BMC Biotechnol. 19 66

    PubMed  PubMed Central  Google Scholar 

  • Qiu L, Sun Y, Jiang Z, Yang P, Liu H, Zhou H, Wang X, Zhang W, Lin Y and Ma W 2019 The midgut V-ATPase subunit A gene is associated with toxicity to crystal 2Aa and crystal 1Ca-expressing transgenic rice in Chilo suppressalis. Insect Mol. Biol. 28 520–527

    CAS  PubMed  Google Scholar 

  • Qiu L, Fan J, Zhang B, Liu L, Wang X, Lei C, Lin Y and Ma W 2017 RNA interference knockdown of aminopeptidase N genes decrease the susceptibility of Chilo suppressalis larvae to Cry1Ab/Cry1Ac and Cry1Ca-expressing transgenic rice. J. Invert. Pathol. 145 9–12

    CAS  Google Scholar 

  • Rajadurai G, Kalaivani A, Varanavasiyappan S, Balakrishnan N, Udayasuriyan V, Sudhakar D and Natarajan N 2018 Generation of insect resistant marker-free transgenic rice with a novel cry2AX1 gene. Ele. J. Plant Breed. 9 723–32

    Google Scholar 

  • Rani S, Sharma V, Hada A and Koundal KR 2017a Efficient Genetic Transformation of Brassica juncea with Lectin Using Cotyledon Explants. Int. J. Adv. Biotechnol. Res. 7 1–12

    CAS  Google Scholar 

  • Rani S, Sharma V, Hada A, Bhattacharya RC and Koundal KR 2017b Fusion gene construct preparation with lectin and protease inhibitor genes against aphids and efficient genetic transformation of Brassica juncea using cotyledon explants. Acta Physiol. Plant. 39 115

    Google Scholar 

  • Riaz S, Nasir IA, Bhatti MU, Adeyinka OS, Toufiq N, Yousaf I and Tabassum B 2020 Resistance to Chilo infuscatellus (Lepidoptera: Pyraloidea) in transgenic lines of sugarcane expressing Bacillus thuringiensis derived Vip3A protein. Mol. Biol. Rep. 47 1–10

    Google Scholar 

  • Ribeiro TP, Arraes FB, Lourenço-Tessutti IT, Silva MS, Lisei-de-Sá ME, Lucena WA, Macedo LL, Lima JN, Santos Amorim RM, Artico S and Alves-Ferreira M 2017 Transgenic cotton expressing Cry10Aa toxin confers high resistance to the cotton boll weevil. Plant Biotechnol. J. 15 997–1009

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakthi AR, Naveenkumar A, Deepikha PS, Balakrishnan N, Kumar KK, Devi EK, Balasubramani V, Arul L, Singh PK, Sudhakar D and Udayasuriyan V 2015 Expression and inheritance of chimeric cry2AX1 gene in transgenic cotton plants generated through somatic embryogenesis. In Vitro Cell Dev. Biol. Plant 51 379–389

    CAS  Google Scholar 

  • Sawardekar SV, Katageri IS, Salimath PM, Kumar PA and Kelkar VG 2017 Standardization of in-vitro genetic transformation technique in chickpea (Cicer arietinum L.) for pod-borer resistance. Adv. Agric. Res. Technol. J. 1 2

  • Scott JG, Michel K, Bartholomay LC, Siegfried BD, Hunter WB, Smagghe G, Zhu KY and Douglas AE 2013 Towards the elements of successful insect RNAi. J. Insect Physiol. 59 1212–1221

    CAS  PubMed  Google Scholar 

  • Selale H, Dağlı F, Mutlu N, Doğanlar S and Frary A 2017 Cry1Ac-mediated resistance to tomato leaf miner (Tuta absoluta) in tomato. Plant Cell Tiss. Org. Cult. 131 65–73

    CAS  Google Scholar 

  • Siddiqui HA, Asif M, Asad S, Naqvi RZ, Ajaz S, Umer N, Anjum N, Rauf I, Sarwar M, Arshad M and Amin I 2019 Development and evaluation of double gene transgenic cotton lines expressing Cry toxins for protection against chewing insect pests. Sci. Rep. 9 1–7

    Google Scholar 

  • Singh AK, Paritosh K, Kant U, Burma PK and Pental D 2016 High expression of Cry1Ac protein in cotton (Gossypium hirsutum) by combining independent transgenic events that target the protein to cytoplasm and plastids. PloS One 11 158603

    Google Scholar 

  • Singh S, Kumar NR, Maniraj R, Lakshmikanth R, Rao KY, Muralimohan N, Arulprakash T, Karthik K, Shashibhushan NB, Vinutha T, Pattanayak D, Kumar PA and Sreevathsa R 2018 Expression of Cry2Aa, a Bacillus thuringiensis insecticidal protein in transgenic pigeon pea confers resistance to gram pod borer, Helicoverpa armigera. Sci. Rep. 8 1–2

    Google Scholar 

  • Soliman HI, Abo-El-Hasan FM, El-Seedy AS and Mabrouk YM 2017 Agrobacterium-mediated transformation of tomato (Lycopersicon esculentum mill.) using a synthetic cry1ab gene for enhanced resistance against Tuta absoluta (Meyrick). J. Microbiol. Biotech. Food Sci. 7(1) 67–74

    Google Scholar 

  • Vanti GL, Katageri IS, Inamdar SR, Hiremathada V and Swamy BM 2018 Potent insect gut binding lectin from Sclerotium rolfsii impart resistance to sucking and chewing type insects in cotton. J. Biotechnol. 278 20–27

    CAS  PubMed  Google Scholar 

  • Wang H, Shi Y, Wang L, Liu S, Wu S, Yang Y and Wu Y 2018 CYP6AE gene cluster knockout in Helicoverpa armigera reveals role in detoxification of phytochemicals and insecticides. Nat. Commun. 9 1–8

    Google Scholar 

  • Wang J, Ma H, Zuo Y, Yang Y and Wu Y 2020a CRISPR-mediated gene knockout reveals nicotinic acetylcholine receptor (nAChR) subunit α6 as a target of spinosyns in Helicoverpa armigeraPest Manag. Sci. 76 https://doi.org/10.1002/ps.5889

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu Y, Huang J, Jin W, Yang Y and Wu Y 2020b CRISPR-Mediated Knockout of the ABCC2 Gene in Ostrinia furnacalis Confers High-Level Resistance to the Bacillus thuringiensis Cry1Fa Toxin. Toxins 12 246

    CAS  PubMed Central  Google Scholar 

  • Wang J, Wang H, Liu S, Liu L, Tay WT, Walsh TK and Wu Y 2017 CRISPR/Cas9 mediated genome editing of Helicoverpa armigera with mutations of an ABC transporter gene HaABCA2 confers resistance to Bacillus thuringiensis Cry2A toxins. Insect. Biochem. Mol. Biol. 87 147–153

    CAS  PubMed  Google Scholar 

  • Whalon ME and Wingerd BA 2003 Bt: mode of action and use. Archives of Insect Biochemistry and Physiology. Entol. Soc. America 54 200–211

    CAS  Google Scholar 

  • Xu C, Cheng J, Lin H, Lin C, Gao J and Shen Z 2018 Characterization of transgenic rice expressing fusion protein Cry1Ab/Vip3A for insect resistance. Sci. Rep. 8 1–8

    Google Scholar 

  • Yan S, Qian J, Cai C, Ma Z, Li J, Yin M, Ren B and Shen J 2020 Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 93 449–459

    Google Scholar 

  • Zhong Y, Ahmed S, Deng G, Fan W, Zhang P and Wang H 2019 Improved insect resistance against Spodoptera litura in transgenic sweet potato by overexpressing Cry1Aa toxin. Plant Cell Rep. 38 1439–1448

    CAS  PubMed  Google Scholar 

  • Zhu X, Zhao J, Abbas HM, Liu Y, Cheng M, Huang J, Cheng W, Wang B, Bai C, Wang G and Dong W 2018 Pyramiding of nine transgenes in maize generates high-level resistance against necrotrophic maize pathogens. Theor. Appl. Genet. 131 2145–2156

    CAS  PubMed  Google Scholar 

  • Zuo Y, Xue Y, Lu W, Ma H, Chen M, Wu Y and Hu Z 2020 Functional validation of nicotinic acetylcholine receptor (nAChR) α6 as a target of spinosyns in Spodoptera exigua utilizing the CRISPR/Cas9 system. Pest Manag. Sci. 76 2415–2422

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mallikarjuna Garladinne.

Additional information

This article is part of the Topical Collection: Genetic Intervention in Plants: Mechanisms and Benefits.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talakayala, A., Katta, S. & Garladinne, M. Genetic engineering of crops for insect resistance: An overview. J Biosci 45, 114 (2020). https://doi.org/10.1007/s12038-020-00081-y

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s12038-020-00081-y

Keywords

Navigation