Skip to main content
Log in

Assessment of Cutting Forces and Temperature in Tapered Milling of Stone–Plastic Composite Using Response Surface Methodology

  • Machine Learning Applications in Advanced Manufacturing Processes
  • Published:
JOM Aims and scope Submit manuscript

Abstract

In the machining of stone–plastic composites, the cutting efficiency and increased economy are important considerations. To this end, stone–plastic composite was up-milled using tapered cutters. Cutting forces and temperature were measured under varied angle geometries and cutting parameters. Response surface methodology allowed the analysis of changes in cutting forces and temperature, and the significant contributions of each variable and their two-level interactions were determined. Correlations between actual and predicted results were found by developing mathematical models for cutting forces and temperature, which can be used to make accurate predictions. Finally, the optimisation of cutting conditions for tapered milling stone–plastic composites by minimising cutting forces and temperature was determined as taper angle 75°, feed per tooth 0.44 mm and cutting depth 0.5 mm. It is proposed that these parameters be adopted in industrial machining for higher machining efficiency and lower production cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. X.L. Guo, Z.L. Zhu, M. Ekevad, B. Xu, and P.X. Cao, Adv. Appl. Ceram. 117, 16 (2017). https://doi.org/10.1080/17436753.2017.1368946.

    Article  Google Scholar 

  2. I.S. Kang, J.S. Kim, J.H. Kim, M.C. Kang, and Y.W. Seo, Mater. Process. Technol. 187, 250 (2007). https://doi.org/10.1016/j.jmatprotec.2006.11.155.

    Article  Google Scholar 

  3. S. An, Y.N. Cheng, X.L. Liu, M.Y. Li, and L. Shi, Key Eng. Mater. 589–590, 421 (2013). https://doi.org/10.4028/www.scientific.net/KEM.589-590.421.

    Article  Google Scholar 

  4. J.H. Li, J. Sun, and Y.Q. Chang, Doors Windows 10, 10 (2010). https://doi.org/10.3969/j.issn.1673-8780.2010.10.002.

    Article  Google Scholar 

  5. Y.Z. Li, C.N. Patent 1 013 069 27A. Feb. 24, 2008. https://patents.google.com/patent/CN101306927A/zh

  6. S. Turchetta, Int. J. Adv. Manuf. Technol. 61, 441 (2012). https://doi.org/10.1007/s00170-011-3717-4.

    Article  Google Scholar 

  7. M. Zhou, B.K.A. Ngoi, M.N. Yusoff, and X.J. Wang, J. Mater. Process. Technol. 174, 29 (2006). https://doi.org/10.1016/j.jmatprotec.2005.02.248.

    Article  Google Scholar 

  8. W.G. Li, Z.K. Zhang, X.R. Peng, and B. Li, Ann. For. Sci. 74, 37 (2017). https://doi.org/10.1007/s13595-017-0632-3.

    Article  Google Scholar 

  9. P.X. Cao, Z.L. Zhu, D. Buck, X.L. Guo, M. Ekevad, and X.D. Wang, J. Mech. Sci. Technol. 3, 351 (2019). https://doi.org/10.1007/s12206-018-1237-y.

    Article  Google Scholar 

  10. Z.L. Zhu, D. Buck, X.L. Guo, P.X. Cao, and M. Ekevad, Appl. Sci. (Basel) 9, 1373 (2019). https://doi.org/10.3390/app9071373.

    Article  Google Scholar 

  11. Z.L. Zhu, D. Buck, X.L. Guo, M. Ekevad, and P.X. Cao, Sci. Adv. Mater. 11, 884 (2019). https://doi.org/10.1166/sam.2019.3538.

    Article  Google Scholar 

  12. M. Belmonte, F.J. Oliveira, J. Sacramento, A.J.S. Fernandes, and R.F. Silva, Diam. Relat. Mater. 13, 843 (2004). https://doi.org/10.1016/j.diamond.2003.11.018.

    Article  Google Scholar 

  13. M.V. Ramesh, W.B. Lee, C.F. Cheung, and K.C. Chan, Mater. Manuf. Process. 16, 61 (2001). https://doi.org/10.1081/AMP-100103697.

    Article  Google Scholar 

  14. S.H. Yeo, M. Zhou, K.A. Ngoi, and S.P. Yap, Mater. Manuf. Process. 14, 875 (1999). https://doi.org/10.1080/10426919908914879.

    Article  Google Scholar 

  15. H. Huang, N. Guo, and X.P. Xu, Key Eng. Mater. 404, 185 (2009). https://doi.org/10.4028/www.scientific.net/KEM.404.185.

    Article  Google Scholar 

  16. H. Aouici, M.A. Yallese, K. Chaoui, T. Mabrouki, and J.F. Rigal, Measurement 45, 344 (2012). https://doi.org/10.1016/j.measurement.2011.11.011.

    Article  Google Scholar 

  17. R.K. Bhushan, J. Clean. Prod. 39, 242 (2013). https://doi.org/10.1016/j.jclepro.2012.08.008.

    Article  Google Scholar 

  18. A.K. Sahoo and P.C. Mishra, Int. J. Ind. Eng. Comput. 5, 407–416 (2014). https://doi.org/10.5267/j.ijiec.2014.4.002.

    Article  Google Scholar 

  19. M. Mia and N.R. Dhar, J. Adv. Res. 7, 1035 (2016). https://doi.org/10.1016/j.jare.2016.05.004.

    Article  Google Scholar 

  20. P.X. Cao, Z.L. Zhu, X.L. Guo, X.D. Wang, C.C. Fu, and C. Zhang, Appl. Sci. (Basel) 9, 2533 (2019). https://doi.org/10.3390/app9122533.

    Article  Google Scholar 

  21. R.R. Li, X. Wei, X.D. Wang, and C.G. Wang, J. Clean. Prod. 183, 818 (2018). https://doi.org/10.1016/j.jclepro.2018.02.194.

    Article  Google Scholar 

  22. R.R. Li, L. Fang, W. Xu, X.Q. Xiong, and X.D. Alice, Sci. Adv. Mater. 11, 655 (2019). https://doi.org/10.1166/sam.2019.3450.

    Article  Google Scholar 

  23. Z.L. Zhu, P.X. Cao, X.L. Guo, X.D. Wang, F. Zhang, and Y. Gao, Materials 12, 2174 (2019). https://doi.org/10.3390/ma12132174.

    Article  Google Scholar 

  24. H. Puls, F. Klocke, and D. Veselovac, Int. J. Adv. Manuf. Technol. 86, 737 (2016). https://doi.org/10.1007/s00170-015-8190-z.

    Article  Google Scholar 

  25. S.T. Newman, A. Nassehi, R. Imani-Asrai, and V. Dhokia, CIRP J. Manuf. Sci. Technol. 5, 127 (2012). https://doi.org/10.1016/j.cirpj.2012.03.007.

    Article  Google Scholar 

  26. X.Q. Xiong, Q.R. Ma, Y.Y. Yuan, Z.H. Wu, and M. Zhang, J. Clean Prod. 267, 121957 (2020). https://doi.org/10.1016/j.jclepro.2020.121957.

    Article  Google Scholar 

  27. D.H. Zhu, X.M. Zhang, and H. Ding, Int. J. Mach. Tool. Manuf. 64, 60 (2013). https://doi.org/10.1016/j.ijmachtools.2012.08.001.

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant No. 31971594), the Project from the International Cooperation Joint Laboratory for Production, Education, Research and Application of Ecological Health Care on Home Furnishing, and the National Key R&D Program of China (2018YFD0600304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaolong Zhu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Buck, D., Cao, P. et al. Assessment of Cutting Forces and Temperature in Tapered Milling of Stone–Plastic Composite Using Response Surface Methodology. JOM 72, 3917–3925 (2020). https://doi.org/10.1007/s11837-020-04368-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04368-1

Navigation