Skip to main content
Log in

Optimizing Extremal Control of Power Consumption of an Electric Arc Furnace: A Method for Selecting an Efficiency Criterion and Its Application

  • Electrometallurgical Processing
  • Published:
JOM Aims and scope Submit manuscript

Abstract

The authors propose an experimental search optimization strategy for power consumption control of electric arc production units to maintain their maximum capacity. An EAF-180 modern high-power electric arc furnace is used as an example. The efficient and intelligent optimization of extremal control of electric power consumption at maximum capacity is facilitated by an extremum search method that stores the active power change rate extremum and stops at a set search time when the process reaches an optimal mode. Use of the proposed search method ensures high reliability of electrode transfer operation by near-complete exclusion of a periodic operation mode which is characteristic of known search methods. Bench-scale testing of the search optimizing extremal control was conducted on a computer-based unit representing a single-phase electric arc furnace. The proposed search method focuses on the application of software and regulating microprocessor controllers, does not require considerable expense, and almost fully excludes interference by process personnel in the power consumption control mode of an electric arc furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B.N. Parsunkin, M.V. Usachev, O.S. Logunova, and V.V. Koroleva, JOM (2019). https://doi.org/10.1007/s11837-018-3202-8.

    Article  Google Scholar 

  2. O.S. Logunova, N.S. Sibileva, and V.V. Pavlov, Steel Transl. (2016). https://doi.org/10.3103/S0967091216100065.

    Article  Google Scholar 

  3. A.A. Nikolaev, P.G. Tulupov, and A.V. Anufriev, Paper presented at the 16th International Conference on Research and Education in Mechatronics (2016). https://doi.org/10.1109/REM.2015.7380411.

  4. R.N. Khrestin, Electr. Eng. Electromech. (2015). https://doi.org/10.20998/2074-272X.2015.4.08.

    Article  Google Scholar 

  5. G.C. Damstra and A.H. Eenink, Elektrotechnik Und Informationstechnik 107(2) 88–92 (1990).

  6. D.M. Mordasov, Technical Measurements of Bulk Materials Density: Teaching Aid (TSU, Tambov, 2004).

    Google Scholar 

  7. A.N. Panov, E.E. Bodrov, S.I. Bodrova, V.O. Mikheeva, Electrotech. Syst. Complexes 2, 39 (2018).

    Google Scholar 

  8. V.A. Oshurkov, L.G. Egorova, A.V. Lednov, and I.A. Antipanov, Electrotech. Syst. Complexes 1 59–66 (2019).

  9. X. Xi, S. Yang, J. Li, J. Wu, M. Zhao, and M. Ye, Ironmak. Steelmak. (2019). https://doi.org/10.1080/03019233.2019.1594549.

    Article  Google Scholar 

  10. R. Garcia-Segura, J.V. Castillo, F. Martell-Chavez, O. Longoria-Gandara, and J.O. Aguilar, Energies (2017). https://doi.org/10.3390/en10091424.

    Article  Google Scholar 

  11. H.J. Odenthal, A.Kemminger, F. Krause, L. Sankowski, N. Uebber, and N. Vogl, Steel Res. Int. (2018). https://doi.org/10.1002/srin.201700098

    Article  Google Scholar 

  12. E.A. Cano-Plata, A.J. Ustariz Farfan, and O.J. Soto Marin, IEEE Trans. Ind. Appl. (2015). https://doi.org/10.1109/IAS.2014.6978448.

    Article  Google Scholar 

  13. S.M.M. Agah, S.H. Hosseinian, H.A. Abyaneh, and N. Moaddabi, IEEE Trans. Power Deliv. (2010). https://doi.org/10.1109/TPWRD.2010.2044812.

    Article  Google Scholar 

  14. Methods of Conventional and Modern Theories of Automated Control: Textbook for Higher Education (Bauman MSTU, Moscow, 2006).

  15. N.V. Lapshin, Automation of Electric Arc Furnace Processes: Teaching Aid (LLC Kvadratum, Moscow, 2002).

    Google Scholar 

  16. A.D. Svenchansky, I.T. Zherdev, A.M. Kruchinin, Yu.M. Mironov, Industrial Electric Furnaces. Electric Arc Furnaces and Special Heating Facilities (Energoizdat, Moscow, 1981).

    Google Scholar 

  17. E.N. Ishmetiev, S.M. Andreev, B.N. Parsunkin, Z.G. Salikhov, U.B. Akhmetov, Automation and Optimization of Secondary Steelmaking Process Control (NMSTU, Magnitogorsk, 2008).

    Google Scholar 

  18. B.N. Parsunkin, S.M. Andreev, E.N. Ishmetiev, Automatic Optimization Process Control Systems Storing Extremum (NMSTU, Magnitogorsk, 2015).

    Google Scholar 

  19. B.N. Parsunkin, S.M. Andreev, and V.V. Prozorov, Steel Transl. 30(5), 36 (2000).

    Google Scholar 

  20. B.N. Parsunkin and S.M. Andreev, Steel Transl. 32, 2 (2002).

    Google Scholar 

  21. B.N. Parsunkin, S.M. Andreev, and D.Y. Zhadinskii, Steel Transl. 37(4), 384 (2007).

    Article  Google Scholar 

  22. B.N. Parsunkin, S.M. Andreev, O.S. Logunova, and T.U. Akhmetov, Int. J. Adv. Manuf. Technol. 79(9-12), 1797 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oxana S. Logunova.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parsunkin, B.N., Andreev, S.M. & Logunova, O.S. Optimizing Extremal Control of Power Consumption of an Electric Arc Furnace: A Method for Selecting an Efficiency Criterion and Its Application. JOM 72, 3812–3817 (2020). https://doi.org/10.1007/s11837-020-04359-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-020-04359-2

Navigation