Skip to main content

Advertisement

Log in

Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Microbes in groundwater play a key role in determining the drinking water quality of the water. The study aims to interpret the sources of microbes in groundwater and its relationship to geochemistry. The study was carried out by collecting groundwater samples and analyzed to obtain various cations and anions, where HCO3, Cl and NO3 found to be higher than permissible limits in few samples. Microbial analysis, like total coliform (TC), total viable counts (TVC), fecal coliforms (FC), Vibrio cholera (V. cholerae) and total Streptococci (T. streptococci) were analyzed, and the observations reveal that most of the samples were found to be above the permissible limits adopted by EU, BIS, WHO and USEPA standards. Correlation analysis shows good correlation between Mg2+–HCO3, K+–NO3, TVC- V. cholerae and T. streptococci-FC. Major ions like Mg+, K+, NO3, Ca2+ and PO4 along with TS and FC were identified to control the geochemical and microbial activities in the region. The magnesium hardness in the groundwater is inferred to influence the TVC and V. cholerae. The mixing of effluents from different sources reflected the association of Cl with TC. Population of microbes T. streptococci and FC was mainly associated with Ca and Cl content in groundwater, depicting the role of electron acceptors and donors. The sources of the microbial population were observed with respect to the land use pattern and the spatial distribution of hydrogeochemical factors in the region. The study inferred that highest microbial activity in the observed in the residential areas, cultivated regions and around the landfill sites due to the leaching of sewage water and fertilizers runoff into groundwater. The concentrations of ions and microbes were found to be above the permissible limits of drinking water quality standards. This may lead to the deterioration in the health of particular coastal region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

References

  • Al-Khatib, I. A., & Arafat, H. A. (2009). Chemical and microbiological quality of desalinated water, groundwater and rain-fed cisterns in the Gaza strip, Palestine. Desalination, 249, 1165–1170.

    CAS  Google Scholar 

  • Almasri, M. N. (2007). Nitrate contamination of groundwater a conceptual management framework. Environmental Impact Assessment, 27, 220–242.

    Google Scholar 

  • Almasri, M., & Kaluarachchi, J. J. (2007). Modeling nitrate contamination of groundwater in agricultural water sheds. Journal of Hydrology, 343(34), 211–229.

    CAS  Google Scholar 

  • APHA (American Public Health Association). (1998). Standard methods for the examination of water and wastewater, 19th edn. Washington, DC.

  • APHA. (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, DC: APHA- AWWA-WEF.

    Google Scholar 

  • Atherholt, T., Feerst, E., Hovendon, K., Jae, R., & Joseph, D. (2003). Evaluation of indicators of fecal contamination in groundwater. American Water Works Association, 95(10), 119–131.

    Google Scholar 

  • Aydin, A. (2007). The microbiological and physico-chemical quality of groundwater in West Thrace, Turkey. Polish Journal of Environmental Studies, 16(3), 377–383.

    CAS  Google Scholar 

  • Baruah, M., Bhattacharyya, K. G., & Patgiri, A. D. (2008). Water quality of shallow groundwater of core city area of Guwahati. In Proceedings of sixteenth national symposium on environment, Haryana, India (pp. 101–106).

  • BIS (2012). Indian standard drinking water specification. Second Revision ISO: 10500:2012, Bureau of Indian Standards, Drinking Water Sectional Committee, FAD 25. New Delhi, India.

  • Brielmann, H., Griebler, C., & Schmidt, S. I. (2009). Effects of thermal energy discharge on shallow groundwater ecosystems. FEMS Microbiology Ecology, 68, 273–286.

    CAS  Google Scholar 

  • Brindha, K., & Kavitha, R. (2015). Hydrochemical assessment of surface water and groundwater quality along Uyyakondan channel, south India. Environmental Earth Sciences, 73, 5383–5393.

    CAS  Google Scholar 

  • Brindha, K., Paul, R., Walter, J., Tan, M. L., & Singh, M. K. (2020). Trace metals contamination in groundwater and implications on human health: Comprehensive assessment using hydrogeochemical and geostatistical methods. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-020-00637-9.

    Article  Google Scholar 

  • Bundy, L. G., Knobeloch, L., Webendorfer, B., Jackson, G. W., & Shaw, B. H. (1994). Nitrate in Wisconsin groundwater sources and concerns. https://142412519.onlinehome.us/uw/pdfs/63054.pdf.

  • Cabral, B., & Marques, P. (2006). Making exception handling work. In Proceedings of the 2nd conference on hot topics in system dependability, Seattle WA (p. 9).

  • Cabral, J. P. S. (2010). Water microbiology; Bacterial pathogens and water. International Journal of Environmental Research and Public Health, 7, 3657–3703.

    Google Scholar 

  • Cairneross, S., Carruthers, I., Curtis, D., Feachem, R., Bradley, D., & Baldwin, G. (1980). Evaluation for village water supply planning (p. 277). Chichester: Wiley.

    Google Scholar 

  • CGWB. (2009). Ground water information booklet Cuddalore District, Chidambaram. Central Ground Water Board, Ministry of Water Resources, India.

  • CGWB. (2015). Ground water information booklet Cuddalore District, Chidambaram. Central Ground Water Board, Ministry of Water Resources, India.

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P., Srinivasamoorthy, K., & Vasudevan, S. (2007). Identification of hydrogeochemically active regimes in groundwaters of Erode district, Tamilnadu. Asian Journal of Water, Environment and Pollution, 5(30), 93–102.

    Google Scholar 

  • Chidambaram, S., Ramanathan, A. L., Prasanna, M. V., Anandhan, P., Srinivasamoorthy, K., & Vasudevan, S. (2008). A statistical approach to identify the hydro geochemically active regimes in groundwater of Erode district, Tamilnadu. Asian Journal of Water Environment and Pollution, 5(3), 93–102.

    CAS  Google Scholar 

  • Chidambaram, S., Senthil Kumar, G., Prasanna, M. V., John Peter, A., Ramanathan, A. L., & Srinivasamoorthy, K. (2009). A study on the hydrogeology and hydrogeochemistry of groundwater from different depths in a coastal aquifer: Annamalai Nagar, Tamilnadu, India. Environmental Geology, 57(1), 59–73.

    CAS  Google Scholar 

  • Chitanand, M. P., Gyananath, G., & Lade, H. S. (2008). Bacterial assessment of groundwater a case study of Nanded city. Journal of Environmental Biology, 29(3), 315–318.

    CAS  Google Scholar 

  • Clark, A., Turner, T., Dorothy, K. P., Goutham, J., Kalavati, C., & Rajanna, B. (2003). Health hazards due to pollution of waters along the coast of Visakhapatnam, east coast of India. Ecotoxicology and Environmental Safety, 56(3), 390–397.

    CAS  Google Scholar 

  • Conrad, R. (1999). Contribution of hydrogen to methane production and control of hydrogen concentrations in methanogen soils and sediments. FEM Microbiology Ecology, 28, 193–202.

    CAS  Google Scholar 

  • Dalton, M. G., & Upchurch, S. B. (1978). Interpretation of Hydro chemical facies by factor analysis. Groundwater, 16(4), 228–233.

    CAS  Google Scholar 

  • Das, S., & Nag, S. K. (2015). Application of multivariate statistical analysis concepts for assessment of hydrogeochemistry of groundwater-a study in Suri I and II blocks of Birbhum District, West Bengal, India. Applied Water Science. https://doi.org/10.1007/s13201-015-0299-6.

    Article  Google Scholar 

  • Davis, C. D., & Dewiest, R. J. (1966). Hydrogeology (p. 463). New York: Wiley.

    Google Scholar 

  • Dedzo, M. G., Tsozué, D., Mimba, M. E., Teddy, F., Nembungwe, R. M., & Linida, S. (2017). Importance of rocks and their weathering products on groundwater quality in Central-East Cameroon. Journal of Hydrology, 4, 23. https://doi.org/10.3390/hydrology4020023.

    Article  Google Scholar 

  • Elango, L., Kannan, R., & Senthil Kumar, M. (2003). Major ion chemistry and identification of hydrogeochemical processes of groundwater in part of Kancheepuram district, Tamilnadu. Indian Journal of Environmental Geosciences, 10(4), 157–166.

    Google Scholar 

  • Eukene, O. P., Flores, M. J. L., & Maglangit, F. F. (2014). Water quality assessment of Bulacao River Cebu, Philippines. Using fecal and total coliform as indicators. Journal of Biodiversity and Environmental Science, 5, 470–475.

    Google Scholar 

  • Garrels, R. M. (1976). A survey of low-temperature water-mineral reactions. In An interpretation of environmental isotope and hydrochemical data in groundwater Hydrology (pp. 65–84). Vienna International Atomic Energy Agency.

  • Gowrisankar, G., Helliah, R., Ramakrishnan, S. R., Vetrimurugan, E., Dhanamadhavan, S., Brindha, K., et al. (2017). Chemical, microbial and antibiotic groundwater after a major flood susceptibility analyses of event in Chennai. Scientific Data, 4, 170135.

    CAS  Google Scholar 

  • Grande, J. A., Borrego, J., & Morales, J. A. (2003). A description of how metal pollution occurs in the Tinto-Odiel rias (Huelva-Spain) through the application of cluster analysis. Marine Pollution Bulletin, 46, 475–480.

    CAS  Google Scholar 

  • Griebler, C., & Lueders, T. (2009). Microbial biodiversity in groundwater ecosystems. Freshwater Biology, 54(4), 649–677.

    Google Scholar 

  • Hem, J. D. (1985). Study and interpretation of the chemical characteristics of natural water. USGS Water Supply Paper, 2254, 117–120.

    Google Scholar 

  • Hodegkiss, I. J. (1988). Bacteriological monitoring of Hong Kong marine water quality. Environment International, 14, 495–499.

    Google Scholar 

  • Hossain, M. G., Selim Reza, A. H. M., Lutfun-Nessa, M., & Ahmed, S. S. (2013). Factor and cluster analysis of water quality data of the groundwater wells of Kushtia, Bangladesh: Implication for arsenic enrichment and mobilization. Journal Geological Society of India, 81, 377–384.

    Google Scholar 

  • Jeevanandam, M., Kannan, R., Srinivasalu, S., & Rammohan, V. (2006). Hydrogeochemistry and groundwater quality assessment of lower part of the Ponnaiyar River Basin, Cuddalore District, South India. Environmental Monitoring and Assessment, 132, 263–274.

    Google Scholar 

  • Joachimsthal, E. L., Ivanov, V., Tay, J., & Tay, S. T. (2004). Bacteriological examination of ballast water in Singapore Harbor by flow cytometer with fish. Marine Pollution Bulletin, 49, 334–343.

    CAS  Google Scholar 

  • Jordan, C., & Smith, R. V. (2005). Methods to predict the agricultural contribution to catchment nitrate loads: Designation of nitrate vulnerable zones in Northern Ireland. Journal of Hydrology, 304(14), 316–329.

    CAS  Google Scholar 

  • Kankal, N. C., Indurkar, M. M., Gudadhe, S. K., & Wate, S. R. (2012). Water quality index of surface water bodies of Gujarat, India. Asian Journal of Experimental Science, 440020(1), 39–48.

    Google Scholar 

  • Kanyerere, T., Levy, J., Xu, Y., & Saka, J. (2012). Assessment of microbial contamination of groundwater in upper Limphasa River catchment, located in a rural area of northern Malawi. Water SA, 38(4), 581–596. https://doi.org/10.4314/wsa.v38i4.14.

    Article  CAS  Google Scholar 

  • Karanth, K. R. (1987). Ground water assessment, development (p. 720). New Delhi: McGraw Hill Publishing Company Limited.

    Google Scholar 

  • Karikari, A. Y. (2012). Physicochemical and microbial water quality assessment of Densu River of Ghana. West African Journal of Applied Ecology, 10, 87–100.

    Google Scholar 

  • Kazmi, S., & Khan, S. A. (2005). Level of nitrate and nitrite contents in drinking water of selected samples. Water quality control laboratory and department of physiology Received at AFPGMI, Rawalpindi Pakistan.

  • Kazmi. (2005). Strategies for water quality management of Yamuna River India. In Proceedings of third international symposium on South East Asian Water Environment Bangkok (pp. 70–80).

  • Keesari, T., Ramakumar, K. L., Chidambaram, S., Pethperumal, S., & Thilagavathi, R. (2016). Understanding the hydrochemical behavior of groundwater and its suitability for drinking and agricultural purposes in Pondicherry area, South India—A step towards sustainable development. Groundwater for Sustainable Development, 2, 143–153.

    Google Scholar 

  • Kelly, E., Hsu, M. J., Kurtz, M., & Nielsen, J. (1996). Isolation of a gene involved in 1, 3-beta-glucan synthesis in Aspergillums nodules and purification of the corresponding protein. Journal of Bacterial, 178(15), 4381–4389.

    CAS  Google Scholar 

  • Leckie, J. D., Pacey, J. G., & Halvadakis, C. P. (1979). Landfill management with moisture control. Journal of Environmental Engineering ASCE, 105, 337–355.

    Google Scholar 

  • Lehloesa, L. J., & Muyima, N. Y. O. (2000). Evaluation of the impact of the household treatment procedures on the quality of groundwater supplies in the rural community of the victoria district, Eastern Cape. Water SA, 26, 285–290.

    CAS  Google Scholar 

  • Lerner, D. N., & Harris, H. (2009). The relationship between land use and groundwater resources and quality. Land Use Policy, 26S, 265–273.

    Google Scholar 

  • Locas, A., Barthe, C., Margolin, A. B., & Payment, P. (2008). Groundwater microbiological quality in Canadian drinking water municipal wells. Canadian Journal of Microbiology, 54(6), 472–478.

    CAS  Google Scholar 

  • Macler, B. A., & Merkel, J. C. (2000). Current knowledge on groundwater microbial pathogens and their control. Hydrogeology Journal, 8, 29–40.

    Google Scholar 

  • Momtaz, H. (2013). Detection of Escherichia coli, salmonella species, and vibrio Cholera in tap water and bottled drinking water in Isfahan Iran. BMC Public Health, 7, 556.

    Google Scholar 

  • Munavalli, G. R., & Mohan Kumar, M. S. (2003). Water quality parameter estimation in steady-state distribution system. Journal of Water Resources Planning and Management, 129(2), 124–134.

    Google Scholar 

  • Munsuz, N., & Unver, İ. (1995). Water quality [In Turkish] No 1389 (p. 168). Ankara: Ankara University Agriculture Faculty Publishing.

    Google Scholar 

  • Mushi, D., Byamukama, D., Kivaisi, A. K., Mach, R. L., & Farnleitner, A. H. (2010). Sorbitol-fermenting bifidobacteria are indicators of very recent human faecal pollution in streams and groundwater habitats in urban tropical lowlands. Journal of Water and Health, 8(3), 466–478. https://doi.org/10.2166/wh.2010.116.

    Article  Google Scholar 

  • Nagarajan, R., Rajmohan, N., Mahendran, U., & Senthamilkumar, S. (2010). Evaluation of groundwater quality and its suitability for drinking and agricultural use in Thanjavur city, Tamilnadu, India. Environmental Monitoring and Assessment, 171(1–4), 289–308.

    CAS  Google Scholar 

  • Nagvenkar, G. S., & Ramaiah, N. (2009). Abundance of sewage-pollution indicator and human pathogenic bacteria in a tropical estuarine complex. Environmental Monitoring and Assessment, 155, 245. https://doi.org/10.1007/s10661-008-0432-1.

    Article  CAS  Google Scholar 

  • Nevondo, T. S., & Cloete, T. E. (1999). Bacterial and chemical quality of water supply in the dertig village settlement. Water, 25(2), 215–220.

    CAS  Google Scholar 

  • Okpokwasili, G. C., & Akujobi, T. C. (1996). Bacteriological indicators of tropical water quality. Environmental Toxicology and Water Quality: An International Journal, 11, 77–81.

    CAS  Google Scholar 

  • Oskay, M., & Yalçin, H. T. (2013). Screening of yeast strains for pectinolytic activity: Effects of different carbon and nitrogen sources in submerged fermentations. Journal of Biological Sciences, 15(3), 89–96.

    Google Scholar 

  • Pacheco, F. A. L., & Van der Weijden, C. H. (2002). Mineral weathering rates calculated from spring water data: a case study in an area with intensive agriculture, the Morais Massif, NE Portugal. Applied Geochemistry, 17, 583–603.

    CAS  Google Scholar 

  • Pandey, P. K., Kass, P. H., Soupir, M. L., Biswas, S., & Singh, V. P. (2014). Contamination of water resources by pathogenic bacteria. AMB Express, 4, 1–16.

    CAS  Google Scholar 

  • Parimalarenganayaki, S., Brindha, K., Sankaran, K., & Elango, L. (2015). Effect of recharge from a check dam and river bank filtration on geochemical and microbial composition of groundwater. Arabian Journal of Geosciences, 8(10), 8069–8076.

    CAS  Google Scholar 

  • Parimalarenganayaki, S., Prock, J., Yu, L., Wintgens, T., & Elango, L. (2014). Microbiological quality of groundwater and surface water in a part of Arani River basin, Tamil Nadu, India. In Prasad, N. B. N., Harikumar, P. S., Gopinath, E. J. J. G., Resmi, T. R., Surendran, U., Ambili, G. K. (Eds.), Proceedings of international symposium on integrated water resources management (Vol. 1, pp. 415–424). CWRDM, Kozhikode, India.

  • Pathak, S. P., & Gopal, K. (2001). Rapid detection of Escherichia coli as an indicator of fecal pollution in water. Indian Journal of Microbiology, 41, 139–151.

    Google Scholar 

  • Paul, J. H., Rose, J. B., Jiang, S., Kellog, C., & Shinn, E. (1995). Occurrence of Fecal indicator Bacteria in surface water and the subsurface equator in Key Largo, Florida. Applied and Environmental Microbiology, 61(6), 2235–2241.

    CAS  Google Scholar 

  • Paul, R., Prasanna, M. V., Gantayat, R. R., & Singh, M. K. (2019). Groundwater quality assessment in Jirania Block, west district of Tripura, India, using hydrogeochemical fingerprints. SN Applied Sciences, 1(9).

  • Paytan, A., Mackey, K. R. M., Chen, Y., Lima, I. D., Doney, S. C., Mahowald, N., et al. (2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 4601–4605. https://doi.org/10.1073/pnas.0811486106.

    Article  Google Scholar 

  • Pomeroy, L. R., & Wiebe, W. J. (2001). Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquatic Microbial Ecology, 23, 187–204.

    Google Scholar 

  • Pradeep, K., Nepolian, M., Anandhan, P., Chandran, Kaviyarasan, R., Prasanna, M. V., & Chidambaram, S. (2016). A study on variation in dissolved silica concentration in groundwater of hard rock aquifers in Southeast coast of India. IOP Conference Series: Materials Science and Engineering, 121, 012008.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Shahul Hameed, A., & Srinivasamoorthy, K. (2010a). Study of evaluation of groundwater in Gadilam basin using hydrogeochemical and isotope data. Environmental Monitoring and Assessment, 168(1–4), 63–90.

    CAS  Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Srinivasamoorthy, K., Anandhan, P., John Peter, A., & Senthil Kumar, G. (2010b). Evaluation of mechanisms controlling hydrogeochemical nature of groundwater in Gadilam River Basin, Tamilnadu, India. Journal of Earth Science, 2(1), 47–60.

    Google Scholar 

  • Prasanna, M. V., Chidambaram, S., Vasu, K., Shahul, H. A., Unnikrishna, W. C., Srinivasamoorthy, K., et al. (2008). Identification of the geochemical processes in coastal groundwater using hydrogeochemical and isotopic data: A Case study of the Gadilam river basin in southern India. Indian Journal of Marine Sciences, 37(2), 200–206.

    CAS  Google Scholar 

  • Priyanka, P., Raju, N. J., Reddy, B. C. S. R., Suresh, U., Gossel, W., & Wycisk, P. (2016). Geochemical processes and multivariate statistical analysis for the assessment of groundwater quality in the Swarnamukhi River basin, Andhra Pradesh, India. Environmental Earth Sciences. https://doi.org/10.1007/s12665-015-5108-x.

    Article  Google Scholar 

  • Pronk, M., Goldscheider, N., & Zopfi, J. (2007). Particle-size distribution as indicator for fecal bacteria contamination of drinking water from karst springs. Environmental Science and Technology, 41(24), 8400–8405.

    CAS  Google Scholar 

  • Putheti, R. R., & Leburu, R. (2009). Role of probiotics and their influence to different physicochemical and microbiological studies of water a case study. International Journal of Fisheries and Aquaculture, 1(1), 001–004.

    CAS  Google Scholar 

  • Rajmohan, N., Al-Futaisi, A., & Al-Touqi, S. (2009). Geochemical process regulating groundwater quality in a coastal region with complex contamination sources Barka, Sultanate of Oman. Environmental Earth Sciences, 59, 385–398.

    CAS  Google Scholar 

  • Ramaiah, N., Kolhe, V., & Sadhasivan, A. (2005). Abundance of pollution indicator and pathogenic bacteria in Mumbai waters. Current Science, 87, 435–439.

    Google Scholar 

  • Remia, K. M. (2010). Efficacy of an insecticide on some biochemical parameters of the earthworm Eudrilus Eugeniae, 17. F10.

  • Remia, K. M., & Logaswamy, S. (2010). Physico-chemical characteristics of groundwater quality in Koundampalayam Panchayat, Coimbatore district, Tamilnadu India. Recent Research in Science and Technology, 2(3), 14–18.

    CAS  Google Scholar 

  • Reyment, R. A., & Bookstein, F. L. (1993). An intraspecific variability in shape in Neobuntonia airella: an exposition of geometric morphometric. In K. G. Mckenzie & P. J. Jones (Eds.), Ostracoda in the earth and life sciences (1st ed., pp. 292–314). Rotterdam: Balkema.

    Google Scholar 

  • Sarker, P., Nahar, S., Begum, R., Reza, S. K. S., & Rahaman, M. S. (2020). Physicochemical and microbial groundwater quality assessment and evaluation in Noakhali Region, Bangladesh. Journal of Applied Life Sciences International. https://doi.org/10.9734/jalsi/2020/v23i330149.

    Article  Google Scholar 

  • Senthilkumar, R., & Sivakumar, K. (2008). Studies on phytoplankton diversity in response to abiotic factors in Veeranam Lake in the Cuddalore district of Tamilnadu. Journal of Environmental Biology, 29(5), 747–752.

    CAS  Google Scholar 

  • Shuval, H. (2003). Estimating the global burden of thalassogenic diseases: Human infectious diseases caused by wastewater pollution of the marine environment. Journal of Water Health, 2, 53–64.

    Google Scholar 

  • Sivakarun, N., Udayaganeshan, P., Chidambaram, S., Venkatramanan, S., Prasanna, M. V., Pradeep, K., et al. (2020). Factors determining the hydrogeochemical processes occurring in shallow groundwater of coastal alluvial aquifer, India. Geochemistry. https://doi.org/10.1016/j.chemer.2020.125623.

    Article  Google Scholar 

  • Snozzi, M. (2000). New concepts and methods for the evaluation of the microbial quality of drinking water. Mitt Lebensm Hyd, 91, 44–52.

    Google Scholar 

  • Snyder, J. D., & Merson, M. H. (1982). The magnitude of the global problem of acute diarrheal disease: A review of active surveillance data. Bulletin of the World Health Organization, 60, 604–613.

    Google Scholar 

  • Srinivas, Y., Aghil, T. B., Oliver, D. H., Nair, C. N., & Chandrasekar, N. (2015). Hydrochemical characteristics and quality assessment of groundwater along the Manavalakurichi coast, Tamilnadu, India. Applied Water Science. https://doi.org/10.1007/s13201-015-0325-8.

    Article  Google Scholar 

  • Srinivasamoorthy, K., Gopinath, M., Chidambaram, S., Vasanthavigar, M., & Sarmad, V. S. (2014). Hydrochemical characterization and quality appraisal of groundwater from Pungar sub basin, Tamilnadu, India. Journal of King Saud University Science, 26, 37–52.

    Google Scholar 

  • Srinivasamoorthy, K., Nanthakumar, C., Vasanthavigar, M., Vijayaraghavan, K., Rajivgandhi, R., Chidambaram, S., et al. (2009). Groundwater quality assessment from a hard rock terrain, Salem district of Tamilnadu, India. Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-009-0076-7.

    Article  Google Scholar 

  • Tellam, J. H. (1995). Hydrochemistry of the saline groundwater of the lower mersey basin permotriassic sandstone aquifer, UK. Journal of Hydrology, 165, 45–84.

    CAS  Google Scholar 

  • Thivya, C., Chidambaram, S., Singaraja, C., Thilagavathi, R., Prasanna, M. V., Anandhan, P., et al. (2013). A study on the significance of lithology in groundwater quality of Madurai district, Tamil Nadu (India). Environment, Development and Sustainability, 15(5), 1365–1387.

    Google Scholar 

  • Thresh, J. C., Beale, J. F., & Suckling, E. V. (1949). In Taylor, E. W. (Ed.), The examination of water and water supplies (p. 819). Churchill Ltd, London

  • Tyagi, P.-C., Chancellor, M., Yoshimura, N., & Huang, L. (2006). Recent advances in intravesical drug/gene delivery. Molecular Pharmaceutics, 3(4), 369–379.

    CAS  Google Scholar 

  • Usharani, K., Umarani, K., Ayyasamy, P. M., Shanthi, K., & Lakshmana Perumalsamy, P. (2010). Physicochemical and bacteriological characteristics of Noyyal River, and groundwater quality of Perur, India. Journal of Applied water Science., 14(2), 29–35.

    CAS  Google Scholar 

  • Vaidya, S. Y., Vala, A. K., & Dube, H. C. (2001). Bacterial indicators of fecal pollution and Bhavnagar coast. Indian Journal of Microbiology, 41, 37–39.

    Google Scholar 

  • Van Der Weijden, C. H., & Pacheco, F. A. L. (2006). Hydrogeochemistry in the Vouga River basin (Central Portugal): Pollution and chemical weathering. Applied Geochemistry, 2, 580–613.

    Google Scholar 

  • Van Ryneveld, M. B., & Fourie, A. B. (1997). Strategy for evaluating the environmental impact of on-site sanitation systems. Water, 23, 279–291.

    Google Scholar 

  • Vengosh, A., Gill, J., Davisson, M. L., & Hudson, G. (2002). A multi isotope and age dating study of groundwater from Salinas Valley, California: hydrochemistry, dynamics, and contamination process. Water Resources Research, 38, 1–17.

    Google Scholar 

  • Vignesh, S., Dahms, H. U., Emmanuel, K. V., Gokul, M. S., Muthukumar, K., Kim, B. R., et al. (2014). Physicochemical parameters aid microbial community, a case study from marine recreational beaches, Southern India. Environmental Monitoring and Assessment, 186(3), 1875–1887.

    CAS  Google Scholar 

  • Vignesh, S., Dahms, H.-U., Kumarasamy, P., Rajendran, A., Kim, B.-R., & James, R. A. (2015). Microbial effects on geochemical parameters in a tropical river basin. Environmental Processes, 2(1), 125–144.

    Google Scholar 

  • Vignesh, S., Dahms, H. U., Muthukumar, K., Vignesh, G., & James, R. A. (2016). Biomonitoring along the tropical southern Indian coast with multiple biomarkers. PLoS ONE, 11(12), 1–24. https://doi.org/10.1371/journal.pone.0154105.

    Article  CAS  Google Scholar 

  • Vignesh, S., Muthukumar, K., Gokul, M. S., & James, R. A. (2013). Microbial pollution indicators in the Cauvery River, Southern India. In Mu Ramkumar (Ed.), On a sustainable future of the Earth’s natural resources (pp. 363–376). Springer Earth System Sciences.

  • Wampler, P. J., & Sisson, A. J. (2011). Spring flow bacterial contamination, and water resources in rural Haiti. Environmental Earth Science, 62, 1619–1628.

    CAS  Google Scholar 

  • Whitehead, Emily & Hiscock, Kevin & Dennis, Paul. (1999). Evidence for sewage contamination of the Sherwood Sandstone aquifer beneath Liverpool, UK. IAHS-AISH Publication. 

  • WHO. (1993). Guidelines for drinking water quality, vol. 1. Recommendations II nd edn Geneva (p. 130).

  • WHO. (1996). Guidelines for drinking water quality, vol. 2. Health criteria and other supporting information II nd edn, Geneva (p. 973).

  • WHO. (2006). Guideline for drinking water quality (Vol. Recommendations, p. 130). Geneva: World Health Organization.

    Google Scholar 

  • WHO. (2011). Guideline for drinking water quality (4th ed.). Geneva: World Health Organization.

    Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Venkatramanan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasudevan, U., Gantayat, R.R., Chidambaram, S. et al. Microbial contamination and its associations with major ions in shallow groundwater along coastal Tamil Nadu. Environ Geochem Health 43, 1069–1088 (2021). https://doi.org/10.1007/s10653-020-00712-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00712-1

Keywords

Navigation