Skip to main content

Advertisement

Log in

A study of natural analogues for predicting the performance of a CO2 geological storage: the experience from a natural CO2 reservoir (Gañuelas-Mazarrón Tertiary Basin, SE Spain)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

In the framework of a Spanish project focused on carbon capture and storage technologies, the Gañuelas-Mazarrón Tertiary Basin (SE Spain) was studied as a natural analogue of a CO2 reservoir affected by anthropogenic leakages. It has been accepted that the main objective of natural analogue studies is to predict the long-term performance of a natural CO2 reservoir to be extrapolated to the operation of a CO2 deep geological storage, but these studies can also provide valuable information to select a site for CO2 storage. Thus, the comprehensive study performed in this Spanish basin has allowed the establishment of a guide to be applied to other similar natural systems with deep saline aquifers that are able to store CO2. This guide comprises 5 phases: (1) the compilation of existing information from the site; (2) the geological and structural study of the natural CO2 reservoir; (3) the characterisation of the main components (waters–rocks–gases) of the natural CO2 reservoir; (4) the identification of analogies between the natural CO2 reservoir and a potential site for CO2 geological storage; and (5) the implications for the long-term behaviour and safety of a CO2 storage system. Whilst the three first stages are well known since they are exclusively focused on the site characterisation, the latter two are poorly developed. For this reason, it has been considered convenient to go deeper into both the identification of analogies and the assessment of their performance in storing CO2. The main results of this study are aimed at elaborating a practical guide for regulatory agencies that are responsible for making decisions about sites that have been selected for anthropogenic CO2 geological storage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

modified by Rodrigo-Naharro 2014)

Fig. 8

(modified from Rodrigo-Naharro 2014)

Similar content being viewed by others

References

  • Acero P, Auqué LF, Gimeno MJ, Gómez JB (2009) The Alhama-Jaraba system as a natural analogue for CO2-geological sequestration. Geochim Cosmochim Acta 73:A1–A65

    Google Scholar 

  • Araguas-Araguas L, Díaz-Teijeiro MF (2005) Isotope composition of precipitation and water vapour in the Iberian Peninsula. IAEA-TECDOC-1453:173–190

  • Auqué LF, Gimeno MJ, Acero P, Gómez JB, Asta MP (2008) Modelo Conceptual para el Sistema Geotermal de Alhama-Jaraba (Cordillera Ibérica, España). Macla 9:37–38

    Google Scholar 

  • Auqué LF, Acero P, Gimeno MJ, Gómez JB, Asta MP (2009) Hydrogeochemical modeling of a thermal system and lessons learned for CO2 geologic storage. Chem Geol 268:324–336

    Google Scholar 

  • Barragán G (1997) Algunos datos sobre la actividad hidrotermal pliocena al Oeste de Cuevas del Almanzora: encuadre geológico y cronológico de las manifestaciones magmáticas e hidrotermales de la depresión de Vera (Provincia de Almería). In: García-Rossell L, Navarro A (eds), Recursos Naturales y Medio Ambiente en el Sudeste Peninsular. Instituto de Estudios Almerienses

  • Bergman PD, Winter EM (1995) Disposal of carbon dioxide in aquifers in the US. Energy Convers Manage 36:523–526

    Google Scholar 

  • Bernhard G, Geipel G, Reich T, Brendler V, Amayri S, Nitsche H (2001) Uranyl (VI) carbonate complex formation: validation of the Ca2UO2(CO3)3 (aq.) species. Radiochim Acta 89:511–518

    Google Scholar 

  • Cerling TE (1984) The stable isotopic composition of modern sil carbonate and its relationship to climate. Earth Planet Sci Lett 71:229–240

    Google Scholar 

  • Cerling TE (1991) Carbon dioxide in the atmosphere: evidence from Cenozoic and Mesozoic paleosols. Am J Sci 291:377–400

    Google Scholar 

  • Cerón JC, Martín-Vallejo M, García-Rossell L (1998) Geoquímica de las aguas termales con CO2 del SE de las Cordilleras Béticas. Estud Geol 54:199–207

    Google Scholar 

  • Cerón JC, Martin-Vallejo M, Garcia-Rossell L (2000) CO2-rich thermomineral groundwater in the Betic Cordilleras, southeastern Spain: genesis and tectonic implications. Hydrogeol J 8:209–217

    Google Scholar 

  • Chadwick RA, Arts R, Bernstone C, May F, Thibeau S, Zweigel P (2008) Best practice for the storage of CO2 in saline aquifers—observations and guidelines from the SACS and CO2STORE projects. British Geological Survey Occasional Publication, 14

  • Choubey VM, Bartarya SK, Ramola RC (2003) Radon in groundwater of eastern Doon valley, Outer Himalaya. Radiat Meas 36:401–405

    Google Scholar 

  • CHS (2005) Estudio de cuantificación del volumen anual de sobreexplotación de los acuíferos de las unidades hidrogeológicas 07.30 Bajo Guadalentín, 07.32 Mazarrón, 07.25 Santa Yéchar y 07.57 Aledo. Tomos VI, VII y VIII. Internal Report. Ref. 64-03.232.0005.03.18

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC Press, New York, p 328

    Google Scholar 

  • Clark DE, Oelkers EH, Gunnarsson I, Sigfússon B, Snæbjörnsdóttir SO, Aradóttir ES, Gíslason SR (2020) CarbFix2: CO2 and H2S mineralization during 3.5 years of continuous injection into basaltic rocks at more than 250 ℃. Geochim Cosmochim Acta 279:45–66

    Google Scholar 

  • Côme B, Chapman NA (1986) Natural analogue working group, first meeting, brussels, November 1985. Commission of the European Communities, Nuclear Science and Technology, Brussels, Luxembourg. Report EUR 10315

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133:1702–1703

    Google Scholar 

  • Davis JA, Curtis GP (2003) Application of surface complexation modeling to describe uranium (VI) adsorption and retardation at the uranium mill tailing site at Naturita, Colorado. NUREG report CR-6820. U.S. Nuclear Regulatory Commission, Rockville

  • Deines P (1980) The isotopic composition of reduced carbon. In: Fritz A, Fontes P (eds) The terrestrial environment. Handbook of Environmental Isotope Geochemistry. Elsevier Scientific Press, Amsterdam, pp 329–434

    Google Scholar 

  • Delgado A, Reyes E (2004) Isótopos estables como indicadores paleoclimáticos y paleohidrológicos en medios continentales. Seminarios de la Sociedad Española de Mineralogía. Geoquímica Isotópica Aplicada al Medioambiente 1:37–53

    Google Scholar 

  • Delprat-Jannaud F, Korre A, Shi JQ, McConnell B, Arvanitis A, Boavida D, Car M, Gastine M, Grunnaleite I, Bateman K, Poulsen N, Sinayuc C, Vähäkuopos T, Vercelli S, Wójcicki A (2013) State-of-the-art review of CO2 Storage Site Selection and Characterisation Methods. CGS Europe report No. D3.3. In: Korre A, McConnell B, Delprat-Jannaud F (eds) September 2013, p 116

  • Deutsch CV, Journel AG (1998) GSLIB: geostatistical software library and users guide, 2nd edn. Oxford Univ Press, New York

    Google Scholar 

  • Di Benedetto F, Montegrossi G, Minissale A, Pardi LA, Romanelli M, Tassi F, Delgado-Huertas A, Pampin EM, Vaselli O, Borrini D (2011) Biotic and inorganic control on travertine deposition at Bullicame 3 spring (Viterbo, Italy): a multidisciplinary approach. Geochim Cosmochim Acta 75:4441–4455

    Google Scholar 

  • Dunai TJ, Baur H (1995) Helium, neon, and argon systematics of the European subcontinental mantle: implications for its geochemical evolution. Geochim Cosmochim Acta 59:2767–2783

    Google Scholar 

  • Elío J, Ortega MF, Nisi B, Mazadiego LF, Vaselli O, Caballero J, Grandia F (2015) CO2 and Rn degassing from the natural analog of Campo de Calatrava (Spain): implications for monitoring of CO2 storage sites. Int J Greenh Gas Con 32:1–14

    Google Scholar 

  • Espinosa Godoy J, Martín Vivaldi JM, Herrera López JL, Pérez Rojas A (1972) Mapa Geológico de España, E: 1:50.000. Hoja 976–Mazarrón

  • Font LI, Baixeras C, Domingo C, Fernández F (1999) Experimental and theoretical study of radon levels and entry mechanisms in a Mediterranean climate house. Radiat Meas 31:277–282

    Google Scholar 

  • Friedli H, Lotscher H, Oeschger H, Siegenthaler U, Stauffer B (1986) Ice core record of the 13C/12C ratio of atmospheric CO2 in the past two centuries. Nature 324:237–238

    Google Scholar 

  • Gat JR, Carmi I (1970) Evolution in the isotopic composition of atmospheric waters in the Mediterranean Sea area. J Geophys Res 75:3039–3048

    Google Scholar 

  • Gat JR, Carmi I (1987) Effect of climate changes on the precipitation patterns and isotopic composition of water in a climate transition zone: case of the Eastern Mediterranean Sea area. The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources. Proceedings of the Vancouver Symposium, IAHS Publ. No. 168, August 1987, pp. 513–523

  • Godec M, Kuuskraa V, Van Leeuwen T, Melzer LS, Wildgust N (2011) CO2 storage in depleted oil fields: the worldwide potential for carbon dioxide enhanced oil recovery. Energy Proced 4:2162–2169

    Google Scholar 

  • Grobe M, Pashin JC, Dodge RL (2009) Carbon dioxide sequestration in geological media: state of the science. In: Grobe M, Pashin JC, Dodge RL (eds) AAPG studies in geology 59. American Association of Petroleum Geologists, Tulsa, p 715

    Google Scholar 

  • Hannis S, Lu J, Chadwick A, Hovorka S, Kirk K, Romanak K, Pearce J (2017) CO2 storage in depleted or depleting oil and gas fields: what can we learn from existing projects? Energy Proced 114:5680–5690

    Google Scholar 

  • Hopke PK, Borak TB, Doull J, Cleaver JE, Eckerman KF, Gundersen LCS, Harley NH, Hess CT, Kinner NE, Kopecky KJ, Mckone TE, Sextro RG, Simon SL (2000) Health risks due to radon in drinking water. Environ Sci Technol 34:921–926

    Google Scholar 

  • IEA-GHG (2009) CCS Site Characterisation Criteria. IEA Greenhouse Gas R&D Programme, Technical Study, Report No. 2009/10

  • IGME (1981) Los recursos hídricos subterráneos de la Comarca Mazarrón-Águilas. Situación actual y perspectivas futuras, 4 tomos

  • IGME-ADARO (1985) Investigación de las posibilidades de existencia de energía geotérmica en la comarca de Mazarrón-Águilas (Murcia). Informe interno, VIII Tomos

  • Ioannides K, Papachristodoulou C, Stamoulis K, Karamanis D, Pavlides S, Chatzipetros A, Karakala E (2003) Soil gas radon: a tool for exploring active fault zones. Appl Radiat Isot 59:205–213

    Google Scholar 

  • IPCC (2005) IPCC special report on carbon dioxide capture and storage. In: Metz B, Davidson O, de Coninck HC, Loos M, Meyer LA (eds) Prepared by Working Group III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, New York, p 442

    Google Scholar 

  • IPIECA (2003) Workshop on carbon dioxide capture and geological storage, brussels, 21–22 October 2003

  • Javoy M, Pineau F, Delorme H (1986) Carbon and nitrogen isotopes in the mantle. Chem Geol 57:41–62

    Google Scholar 

  • Jones B, Renaut RW (2010) Calcareous spring deposits in continental settings. In: Alonso-Zarza AM, Tanner LH (eds) Carbonates in Continental Settings: Facies, Environments, and Processes. Developments in Sedimentology 61:177–224

  • Jurgens BC, Fram MS, Belitz K, Burow KR, Landon MK (2010) Effects of groundwater development on uranium: Central Valley, California, USA. Ground Water 48:913–928

    Google Scholar 

  • Labat A, Kitous A, Perry M, Saveyn B, Vandyck T, Vrontisi Z (2015) GECO2015. Global Energy and Climate Outlook. Road to Paris. JRC Scientific and Policy Reports, EUR 27239 EN

  • Mackenzie FT, Lerman A, Ver LMB (2001) Recent past and future of the global carbon cycle. Geological perspectives of global climate change. In: Gerhard LC, Harrison WE, Hanson BM (eds) AAPG Studies in Geology 47, 51–82

  • Mazzotti M, Pini R, Storti G, Burlini L (2010) Carbon dioxide (CO2) sequestration in unmineable coal seams and use for enhanced coalbed methane recovery (ECBM). In: Maroto-Valer, MM (ed) Developments and Innovation in Carbon Dioxide (CO2) Capture and Storage Technology. Vol. 2: Carbon Dioxide (CO2) Storage and Utilisation

  • Michael K, Bachu S, Buschkuehle BE, Haug K, Talman S (2009) Comprehensive characterization of a potential site for CO2 geological storage in central Alberta, Canada. In: Grobe M, Pashin JC, Dodge RL (eds) Carbon dioxide sequestration in geological media—State of the science: AAPG Studies in Geology 59, pp 227–240

  • Mukherjee M, Misra S (2018) A review of experimental research on enhanced coal bed methane (ECBM) recovery via CO2 sequestration. Earth Sci Rev 179:392–410

    Google Scholar 

  • Navarro A, Fernández-Uría A, Doblas JG (1993) Las aguas subterráneas en España: Estudio de síntesis. Instituto Tecnológico Geominero de España, Madrid

    Google Scholar 

  • Nisi B, Vaselli O, Tassi F, Gimeno MJ, Acero P, Poreda RJ, Rodrigo-Naharro J, Delgado A, Pérez del Villar L (2010a) Effects of deep saline CO2-rich waters in the shallow aquifers from the Mazarrón-Gañuelas Tertiary basin (central-southern Spain). Proceedings of the 85º Congresso Nazionale; 2010 Sep 6–8, Pisa, Italy. Società Geologica Italiana; 2010. Rendiconti Online della Società Geologica Italiana 11, pp 186–187

  • Nisi B, Vaselli O, Tassi F, Gimeno MJ, Acero P, Poreda RJ, Rodrigo-Naharro J, Delgado A, Pérez del Villar L (2010b) Water deterioration of the Mazarrón-Gañuelas aquifer (SE Spain) by deep-seated CO2 saline-waters as evidenced by geochemical and isotopic investigation. Proceedings of the 89th SIMP Meeting; 2010 Sep 13–15, Ferrara, Italy. Societá Italiana di Mineralogia e Petrologia; 2010, S2.2-O3

  • O’Leary MH (1988) Carbon isotopes in photosynthesis. Bioscience 38:328–336

    Google Scholar 

  • Ortega MF, Rincones M, Elío J, Gutiérrez del Olmo J, Nisi B, Mazadiego LF, Iglesias L, Vaselli O, Grandia F, García R, De la Vega R, Llamas B (2014) Gas monitoring methodology and application to CCS projects as defined by atmospheric and remote sensing survey in the natural analogue of Campo de Calatrava. Glob NEST J 16:269–279

    Google Scholar 

  • Pan ZJ, Ye JP, Zhou FB, Tan YL, Connell LD, Fan JJ (2018) CO2 storage in coal to enhance coalbed methane recovery: a review of field experiments in China. Int Geol Rev 60:754–776

    Google Scholar 

  • Parkin TB, Doran JW, Franco-Vizcaino E (1996) Field and laboratory tests of soil respiration. In: Doran JW, Jones AJ (eds) Methods for assessing soil, quality, pp 231–245

  • Paulley A, Metcalfe R, Limer L (2011) Systematic FEP and scenario analysis to provide a framework for assessing long-term performance of the Krechba CO2 storage system at In Salah. Energy Proced 4:4185–4192

    Google Scholar 

  • Pentecost A (1995) The Quaternary travertine deposits of Europe and Asia Minor. Quaternary Sci Rev 14:1005–1028

    Google Scholar 

  • Pentecost A (2005) Travertine. Springer, Berlin, p 445

    Google Scholar 

  • Pentecost A, Viles H (1994) A review and reassessment of travertine classification. Géog Phys Quatern 48:305–314

    Google Scholar 

  • Pérez del Villar L, Pelayo M, Prado AJ, Recreo F, Vilanova E, Grandia F, Duro L, Doménech C, Martell M, Delgado A, Auqué LF, Gimeno MJ, Acero P (2009a) Almacenamiento Geológico de CO2: Análogos naturales del almacenamiento y escape. Fundamentos, ejemplos y aplicaciones para la predicción de riesgos y la evaluación del comportamiento a largo plazo. Comunicación Técnica presentada al 9º Congreso Nacional del Medio Ambiente (CONAMA), pp 35

  • Pérez del Villar L, Prado-Pérez AJ, López-Vergara ML et al (2009b) Memoria Científico-Técnica del periodo 2008–2009 del PSE-120000-2008-6 (PSS-120000-2008-31). Línea de Análogos Naturales: Resultados preliminares del estudio de los análogos naturales estudiados en: la región de La Selva (Girona), Valle del Alto Guadalentín (Murcia-Almería), Alicún de las Torres (Granada), Alhama de Aragón-Jaraba (Zaragoza) y Castilla León. CIEMAT, pp 510

  • Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analyses. Eos Trans Am Geophys Union 25:914–928

    Google Scholar 

  • Prado-Pérez AJ (2011) El Sistema Termal de Alicún de las Torres (Granada) como Análogo Natural de Escape de CO2 en Forma de DIC: implicaciones paleoclimáticas y como Sumidero de CO2. Tesis Doctoral. Univ, Complutense de Madrid, p 411

    Google Scholar 

  • Prado-Pérez AJ, Pérez del Villar L (2011) Dedolomitization as an analogue process for assessing the long-term behaviour of a CO2 deep geological storage: the Alicún de las Torres thermal system (Betic Cordillera, Spain). Chem Geol 289:98–113

    Google Scholar 

  • Prado-Pérez AJ, Delgado Huertas A, Crespo MT, Martín Sánchez A, Pérez del Villar L (2013) Late Pleistocene and Holocene paleoclimatic and palaeoenvironmental reconstruction at middle geographical latitude: an approach based on the isotopic record from a travertine formation in the Guadix-Baza basin, Spain. Geol Mag 150:602–625

    Google Scholar 

  • Prado-Pérez AJ, Aracil E, Pérez del Villar L (2014) A combined methodology using electrical resistivity tomography, ordinary kriging and porosimetry for quantifying total C trapped in carbonate formations associated with natural analogues for CO2 leakage. J Appl Geophys 105:21–33

    Google Scholar 

  • Quintessa (2014) Generic CO2 FEP Database, Version 2.0. Quintessa Limited, Henley-on-Thames, United Kingdom. Open access on-line database http://www.quintessa.org/co2fepdb/

  • Raich JW, Schlesinger WH (1992) The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus 44B:81–99

    Google Scholar 

  • Renaut RW, Jones B (2000) Microbial precipitates around continental hot springs and geysers. In: Riding RE, Awramik SM (eds) Microbial Sediments. Springer, Berlin, pp 187–195

    Google Scholar 

  • Reyes E, Pérez del Villar L, Delgado A, Cortecci G, Nuñez R, Pelayo M, Cózar J (1998) Carbonatation processes at the El Berrocal analogue granitic system (Spain): mineralogical and isotopic study. Chem Geol 150:293–315

    Google Scholar 

  • Riding JB, Rochelle CA (2005) The IEA Weyburn CO2 monitoring and storage project, final report of the European research team. British geological survey research report, RR/05/03

  • Rodrigo-Naharro J (2014) El análogo natural de almacenamiento y escape de CO2 de la cuenca de Gañuelas-Mazarrón: implicaciones para el comportamiento y la seguridad de un almacenamiento de CO2 en estado supercrítico. PhD thesis, Universidad Politécnica de Madrid, 427 pp. Published thesis. ISBN: 978-84-7834-738-4

  • Rodrigo-Naharro J, Vaselli O, Tassi F, Clemente-Jul C, Pérez del Villar L (2011) Effects on the shallow aquifers by CO2 leakages in a tertiary basin (province of Murcia, Spain). Fifth International Conference on Clean Coal Technologies CCT2011, Zaragoza (Spain)

  • Rodrigo-Naharro J, Nisi B, Vaselli O, Quindós LS, Pérez del Villar L (2012) Measurements and relationships between CO2 and 222Rn in a natural analogue for CO2 storage and leakage: the Mazarrón Tertiary Basin (Murcia, Spain). Geo-Temas 13:1978–1981

    Google Scholar 

  • Rodrigo-Naharro J, Nisi B, Vaselli O, Lelli M, Saldaña R, Clemente-Jul C, Pérez del Villar L (2013) Diffuse soil CO2 flux to assess the reliability of CO2 storage in the Mazarrón-Gañuelas Tertiary Basin (Spain). Fuel 114:162–171

    Google Scholar 

  • Rodrigo-Naharro J, Quindós LS, Clemente-Jul C, Mohamud AH, Pérez del Villar L (2017) CO2 degassing from a Spanish natural analogue for CO2 storage and leakage: implications on 222Rn mobility. Appl Geochem 84:297–305

    Google Scholar 

  • Rodrigo-Naharro J, Aracil E, Pérez del Villar L (2018) Geophysical investigations in the Gañuelas-Mazarrón Tertiary basin (SE Spain): a natural analogue of a geological CO2 storage affected by anthropogenic leakages. J Appl Geophys 155:187–198

    Google Scholar 

  • Rodrigo-Naharro J, Herrero MJ, Delgado-Huertas A, Granados A, Pérez del Villar L (2019) Current travertines precipitation related to artificial CO2 leakages from a natural reservoir (Gañuelas-Mazarrón Tertiary Basin, SE Spain). J Hydrol 577:123997

    Google Scholar 

  • Romanek CS, Grossman EL, Morse JW (1992) Carbon isotopic fractionation in syntetic aragonite and calcite: effects of temperature and precipitation rate. Geochim Cosmochim Acta 56:419–430

    Google Scholar 

  • Sichel HS (1966) The estimation of means and associated confidence limits for smalls samples from lognormal populations. In: Symposium on mathematical statistics and computer applications in ore valuation. South Afr Inst Min Metall. pp 106–122

  • Sinclair AJ (1974) Selection of threshold values in geochemical data using probability graphs. J Geochem Explor 3:129–149

    Google Scholar 

  • Somlai K, Tokonami S, Ishikawa T, Vancsura P, Gáspár M, Jobbágy V, Somlai J, Kovács T (2007) 222Rn concentrations of water in the Balaton Highland, and in the southern part of Hungary, and the assessment of the resulting dose. Rad Meas 42:491–495

    Google Scholar 

  • Thomas DC, Benson SM (2005) Carbon dioxide capture for storage in deep geologic formations—results from the CO2 capture project, Oxford, UK: Elsevier, Vol 1 and 2, pp 136

  • USEPA (2012) 2012 Edition of the drinking water standards and health advisories. EPA 822-S-12-001. pp 20

  • Viles HA, Pentecost A (2007) Tufa and travertine. In: Nash DJ, McLaren SJ (eds) Geochemical sediments and landscapes. Wiley-Blackwell, Oxford, pp 173–199

    Google Scholar 

  • Walia V, Lin S-J, Fu C-C, Yang TF, Hong W-L, Wen K-L, Chen C-H (2010) Soil-gas monitoring: a tool for fault delineation studies along Hsinhua Fault (Tainan), Southern Taiwan. Appl Geochem 25:602–607

    Google Scholar 

Download references

Acknowledgements

This work was carried out in the framework of the Project entitled: “Tecnologías avanzadas de generación, captura y almacenamiento de CO2 (PSE-CO2)”, supported by the former Spanish Ministry of Science and Innovation and the EU FEDER funds under award number PSE-120000-2008-6. The authors are very grateful to the following research teams: the Department of Earth Sciences from the University of Florence (Italy), the CNR-IGG (Institute of Geosciences and Earth Resources) of Pisa (Italy), the Stable Isotope Biogeochemical Group from the Andalusian Earth Sciences Institute (CSIC-UGR), the Geochemical Modelling Group from the University of Zaragoza (Spain), the Radon Group from the University of Cantabria (Spain) and the Geophysical Team from AGS, SL (Spain), that have participated in this Project, without whose participation it would not have been possible the development of this multidisciplinary guide. The authors would also like to thank the three anonymous reviewers for their valuable comments and suggestions that greatly contributed to improve the manuscript. Finally, the authors thank Dr. Hassan Mohamud (Nugaal University, Somalia) and Prof. J. Ortiz (English teacher) for carefully reviewing the text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Rodrigo-Naharro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigo-Naharro, J., Pérez del Villar, L. A study of natural analogues for predicting the performance of a CO2 geological storage: the experience from a natural CO2 reservoir (Gañuelas-Mazarrón Tertiary Basin, SE Spain). Environ Earth Sci 79, 430 (2020). https://doi.org/10.1007/s12665-020-09181-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09181-2

Keywords

Navigation