Skip to main content
Log in

Economic design of memory-type control charts: The fallacy of the formula proposed by Lorenzen and Vance (1986)

  • Original paper
  • Published:
Computational Statistics Aims and scope Submit manuscript

Abstract

Memory-type statistical control charts, such as exponentially weighted moving average (EWMA) and cumulative sum (CUSUM), are broadly-used statistical feedback policies for detecting small quality changes in univariate and multivariate processes. Many papers on economic-statistical design of these control charts used the general formula proposed by Lorenzen and Vance (Technometrics 28(1):3–10, 1986) as a semi-closed-form expression of the long-run average quality cost. Contrary to popular opinion, this paper argues that this old formula is not correct for memory-type control charts and shows how the formula can be corrected by using concepts such as conditional average run lengths (ARLs), mean of ARLs (MARL), and average number of false alarms (ANFA). The paper also proposes a simulation method as an alternative to directly estimate the cost function, which can be easily adapted for nonstandard assumptions. The results for the EWMA, multivariate EWMA, and CUSUM control charts indicate that the correct computation of the objective function results in significantly different optimal designs, which implies that the old formula is not an acceptable approximation for memory-type control charts. A numerical study is also conducted to compare the numerical efficiency and stability of the simulation method and the computational procedure based on the corrected formula. The required codes are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. This code can be used only for non-commercial purposes provided that the source is properly cited.

  2. These codes can be used only for non-commercial purposes provided that the source is properly cited.

References

  • Ahmadi-Javid A, Malhamé R (2015) Optimal control of a multistate failure-prone manufacturing system under a conditional value-at-risk cost criterion. J Optim Theory Appl 167(2):716–732

    MathSciNet  MATH  Google Scholar 

  • Arapostathis A (2017) Some new results on sample path optimality in ergodic control of diffusions. IEEE Trans Autom Control 62(10):5351–5356

    MathSciNet  MATH  Google Scholar 

  • Arapostathis A, Borkar VS, Ghosh MK (2012) Ergodic control of diffusion processes. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Ashok P, Chatterjee K, Daca P, Křetínský J, Meggendorfer T (2017, July) Value iteration for long-run average reward in Markov decision processes. In: Proceedings of international conference on computer aided verification. Springer, pp 201–221

  • Bersimis S, Psarakis S, Panaretos J (2007) Multivariate statistical process control charts: an overview. Qual Reliab Eng Int 23(5):517–543

    Google Scholar 

  • Bertsekas DP, Shreve SE (1996) Stochastic optimal control: the discrete-time case. Athena Scientific, Nashua

    MATH  Google Scholar 

  • Borkar VS (1989) Control of Markov chains with long-run average cost criterion: the dynamic programming equations. SIAM J Control Optim 27(3):642–657

    MathSciNet  MATH  Google Scholar 

  • Borkar VS, Gaitsgory V (2018) Linear programming formulation of long run average optimal control problem. J Optim Theory Appl 181:101–125

    MathSciNet  MATH  Google Scholar 

  • Carlos García-Díaz J, Aparisi F (2005) Economic design of EWMA control charts using regions of maximum and minimum ARL. IIE Trans 37(11):1011–1021

    Google Scholar 

  • Cavazos-Cadena R, Montes-de-Oca R, Sladký K (2014) A counterexample on sample-path optimality in stable Markov decision chains with the average reward criterion. J Optim Theory Appl 163(2):674–684

    MathSciNet  MATH  Google Scholar 

  • Celano G (2011) On the constrained economic design of control charts: a literature review. Production 21(2):223–234

    Google Scholar 

  • Champ CW, Rigdon SE (1991) A comparison of the Markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts. Commun Stat Simul Comput 20(1):191–204

    MATH  Google Scholar 

  • Chiu WC (2015) Economic-statistical design of EWMA control charts based on Taguchi’s loss function. Commun Stat Simul Comput 44(1):137–153

    MathSciNet  MATH  Google Scholar 

  • Chou CY, Chen CH, Liu HR (2006) Economic design of EWMA charts with variable sampling intervals. Qual Quant 40(6):879–896

    Google Scholar 

  • Crosier RB (1988) Multivariate generalizations of cumulative sum quality-control schemes. Technometrics 30(3):291–303

    MathSciNet  MATH  Google Scholar 

  • Crowder SV (1987) A simple method for studying run-length distributions of exponentially weighted moving average charts. Technometrics 29(4):401–407

    MathSciNet  MATH  Google Scholar 

  • Darkhovsky B, Piryatinska A (2018) Model-free offline change-point detection in multidimensional time series of arbitrary nature via ϵ-complexity: simulations and applications. Appl Stoch Models Bus Ind 34(5):633–644

    MathSciNet  MATH  Google Scholar 

  • Duncan AJ (1956) The economic design of \(\overline{X}\) charts used to maintain current control of a process. J Am Stat Asso 51(274):228–242

    MATH  Google Scholar 

  • Ebadi M, Ahmadi-Javid A (2019a) Socio-economic design of control charts for monitoring service processes: a case study of a restaurant system. Qual Technol Quant Manag 16(6):726–735

    Google Scholar 

  • Ebadi M, Ahmadi-Javid A (2019b) Control charts for monitoring multi-stage service processes with optimal queue performance. Commun Stat Simul Comput. https://doi.org/10.1080/03610918.2018.1520872

    Article  Google Scholar 

  • Ershadi MJ, Noorossana R, Niaki STA (2016) Economic-statistical design of simple linear profiles with variable sampling interval. J Appl Stati 43(8):1400–1418

    MathSciNet  MATH  Google Scholar 

  • Gan FF, Chang TC (2000) Computing average run lengths of exponential EWMA charts. J Qual Technol 32(2):183–187

    Google Scholar 

  • Goel AL, Wu SM (1973) Economically optimum design of CUSUM charts. Manage Sci 19(11):1271–1282

    Google Scholar 

  • Gunaratne NGT, Abdollahian MA, Huda S, Yearwood J (2017) Exponentially weighted control charts to monitor multivariate process variability for high dimensions. Int J Prod Res 55(17):4948–4962

    Google Scholar 

  • Haq A, Munir T, Khoo MB (2019) Dual multivariate CUSUM mean charts. Comput Ind Eng 137:106028

    Google Scholar 

  • Huang W, Shu L, Su Y (2014) An accurate evaluation of adaptive exponentially weighted moving average schemes. IIE Trans 46(5):457–469

    Google Scholar 

  • Katebi M, Pourtaheri R (2019) An economic statistical design of the Poisson EWMA control charts for monitoring nonconformities. J Stat Comput Simul 89(15):2813–2830

    MathSciNet  MATH  Google Scholar 

  • Keats JB, Montgomery DC (eds) (1996) Statistical applications in process control. CRC Press, Boca Raton

    Google Scholar 

  • Keats JB, Del Castillo E, Von Collani E, Saniga EM (1997) Economic modeling for statistical process control. J Qual Technol 29(2):144–147

    Google Scholar 

  • Knoth S (2017) ARL numerics for MEWMA charts. J Qual Technol 49(1):78–89

    Google Scholar 

  • Ladany SP (1973) Optimal use of control charts for controlling current production. Manage Sci 19(7):763–772

    Google Scholar 

  • Lee MH (2010) Economic design of cumulative sum control charts for monitoring a process with correlated samples. Commun Stat Simul Comput 39(10):1909–1922

    MathSciNet  MATH  Google Scholar 

  • Lee MH, Khoo MB (2018) Economic-statistical design of control chart with runs rules for correlation within sample. Commun Stat Simul Comput 47(10):2849–2864

    MathSciNet  Google Scholar 

  • Li X (2015) Optimal policies and bounds for stochastic inventory systems with lost sales. J Optim Theory Appl 164(1):359–375

    MathSciNet  MATH  Google Scholar 

  • Linderman K, Love TE (2000a) Economic and economic statistical designs for MEWMA control charts. J Qual Technol 32(4):410–417

    Google Scholar 

  • Linderman K, Love TE (2000b) Implementing economic and economic statistical designs for MEWMA charts. J Qual Technol 32(4):457–463

    Google Scholar 

  • Lorenzen TJ, Vance LC (1986) The economic design of control charts: a unified approach. Technometrics 28(1):3–10

    MathSciNet  MATH  Google Scholar 

  • Love T, Linderman K (2003) A Weibull process failure mechanism for the economic design of MEWMA control charts. J Stat Comput Simul 73(3):195–202

    MathSciNet  MATH  Google Scholar 

  • Lowry CA, Woodall WH, Champ CW, Rigdon SE (1992) A multivariate exponentially weighted moving average control chart. Technometrics 34(1):46–53

    MATH  Google Scholar 

  • Lu SL, Huang CJ (2017) Statistically constrained economic design of maximum double EWMA control charts based on loss functions. Qual Technol Quant Manag 14(3):280–295

    Google Scholar 

  • Lucas JM, Saccucci MS (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):1–12

    MathSciNet  Google Scholar 

  • MacGregor JF, Harris TJ (1990) Exponentially weighted moving average control schemes: properties and enhancements. Technometrics 32(1):23–26

    MathSciNet  Google Scholar 

  • McWilliams TP (1997) Constrained optimization models for determining economic control chart parameters. In: Al-Sultan KS, Rahim MA (eds) Optimization in quality control. Springer, Boston, pp 197–211

    MATH  Google Scholar 

  • Molnau WE, Montgomery DC, Runger GC (2001) Statistically constrained economic design of the multivariate exponentially weighted moving average control chart. Qual Reliab Eng Int 17(1):39–49

    Google Scholar 

  • Montgomery DC (1980) The economic design of control charts: a review and literature survey. J Qual Technol 12(2):75–87

    Google Scholar 

  • Montgomery DC (2013) Introduction to statistical quality control, 7th edn. Wiley, Hoboken

    MATH  Google Scholar 

  • Montgomery DC, Torng JC, Cochran JK, Lawrence FP (1995) Statistically constrained economic design of the EWMA control chart. J Qual Tech 27(3):250–256

    Google Scholar 

  • Niaki STA, Ershadi MJ (2012) A parameter-tuned genetic algorithm for statistically constrained economic design of multivariate CUSUM control charts: a Taguchi loss approach. Int J Syst Sci 43(12):2275–2287

    MathSciNet  MATH  Google Scholar 

  • Noorossana R, Niaki STA, Ershadi MJ (2014) Economic and economic-statistical designs of phase II profile monitoring. Qual Reliab Eng Int 30(5):645–655

    Google Scholar 

  • Page ES (1954) Continuous inspection schemes. Biometrika 41(1/2):100–115

    MathSciNet  MATH  Google Scholar 

  • Pasha MA, Moghadam MB, Fani S (2017) A generalized approach to economic design of control charts: a discussion on implementing. Commun Stat Theory Methods 46(21):10495–10506

    MathSciNet  MATH  Google Scholar 

  • Pasha MA, Bameni Moghadam M, Nematollahi N, Fani S (2018) A generalized model for multiplicity-cause economic and economic statistical design of-control charts with proportional hazards shock model. Commun Stat Simul Comput 47(6):1866–1878

    MathSciNet  Google Scholar 

  • Patil SH, Rattihalli RN (2009) Economic design of moving average control chart for continued and ceased production process. Econ Qual Control 24(1):129–142

    MathSciNet  Google Scholar 

  • Pra PD, Di Masi GB, Trivellato B (2000) Pathwise optimality in stochastic control. SIAM J Control Optim 39(5):1540–1557

    MathSciNet  MATH  Google Scholar 

  • Puterman ML (1994) Markov decision processes: discrete stochastic dynamic programming. Wiley, Hoboken

    MATH  Google Scholar 

  • Rigdon SE (1995a) An integral equation for the in-control average run length of a multivariate exponentially weighted moving average control chart. J Stat Comput Simul 52(4):351–365

    MathSciNet  MATH  Google Scholar 

  • Rigdon SE (1995b) A double-integral equation for the average run length of a multivariate exponentially weighted moving average control chart. Stat Probab Lett 24(4):365–373

    MathSciNet  MATH  Google Scholar 

  • Roberts SW (1959) Control chart tests based on geometric moving averages. Technometrics 1(3):239–250

    Google Scholar 

  • Robin M (1983) Long-term average cost control problems for continuous time Markov processes: a survey. Acta Appl Math 1(3):281–299

    MathSciNet  MATH  Google Scholar 

  • Ross S (1995) Stochastic processes, 2nd edn. Wiley, Hoboken

    Google Scholar 

  • Ross KJ (2008) Stochastic control in continuous time [Lecture Notes, Stanford University]. Retrieved from http://statweb.stanford.edu/~kjross/Stat220notes.pdf

  • Runger GC, Prabhu SS (1996) A Markov chain model for the multivariate exponentially weighted moving averages control chart. J Am Stat Assoc 91(436):1701–1706

    MathSciNet  MATH  Google Scholar 

  • Saccucci MS, Lucas JM (1990) Average run lengths for exponentially weighted moving average control schemes using the Markov chain approach. J Qual Technol 22(2):154–162

    Google Scholar 

  • Saghaei A, Fatemi Ghomi SMT, Jaberi S (2014) Economic design of exponentially weighted moving average control chart based on measurement error using genetic algorithm. Qual Reliab Eng Int 30(8):1153–1163

    Google Scholar 

  • Saniga EM (1989) Economic statistical control-chart designs with an application to \(\overline{X}\) and R charts. Technometrics 31(3):313–320

    Google Scholar 

  • Saniga E, Davis D, Faraz A, McWilliams T, Lucas J (2015) Characteristics of economically designed CUSUM and \(\overline{X}\) control charts. In: Knoth S, Schmid W (eds) Frontiers in statistical quality control, vol 11. Springer, Berlin, pp 201–217

    MATH  Google Scholar 

  • Seif A (2019) A new Markov chain approach for the economic statistical design of the VSS \(T^2\) control chart. Commun Stat Simul Comput 48(1):200–218

    MathSciNet  Google Scholar 

  • Serel DA, Moskowitz H (2008) Joint economic design of EWMA control charts for mean and variance. Eur J Oper Res 184(1):157–168

    MATH  Google Scholar 

  • Sethi SP (2019) Optimal control theory. Springer, Berlin

    MATH  Google Scholar 

  • Sethi SP, Suo W, Taksar MI, Zhang Q (1997) Optimal production planning in a stochastic manufacturing system with long-run average cost. J Optim Theory Appl 92(1):161–188

    MathSciNet  MATH  Google Scholar 

  • Sethi SP, Yan H, Zhang H, Zhang Q (2002) Optimal and hierarchical controls in dynamic stochastic manufacturing systems: a survey. Manuf Serv Oper Manag 4(2):133–170

    Google Scholar 

  • Sethi SP, Zhang Q, Zhang HQ (2005) Average-cost control of stochastic manufacturing systems. Springer, Berlin

    MATH  Google Scholar 

  • Shewhart WA (1931) Economic control of quality of manufactured product. D. Van Nostrand Company, New York

    Google Scholar 

  • Shiryaev AN (2019) Stochastic disorder problems. Springer, Berlin

    MATH  Google Scholar 

  • Simpson JR, Keats JB (1995) Sensitivity study of the CUSUM control chart with an economic model. Int J Prod Econ 40(1):1–19

    Google Scholar 

  • Tartakovsky A, Nikiforov I, Basseville M (2015) Sequential analysis: hypothesis testing and changepoint detection. CRC Press, Boca Raton

    MATH  Google Scholar 

  • Taylor HM (1968) The economic design of cumulative sum control charts. Technometrics 10(3):479–488

    Google Scholar 

  • Testik MC, Borror CM (2004) Design strategies for the multivariate exponentially weighted moving average control chart. Qual Reliab Eng Int 20(6):571–577

    Google Scholar 

  • Torng JCC, Montgomery DC, Cochran JK (1994) Economic design of the EWMA control chart. Econ Qual Control 9(1):3–23

    MATH  Google Scholar 

  • Torng JC, Cochran JK, Montgomery DC, Lawrence FP (1995) Implementing statistically constrained economic EWMA control charts. J Qual Technol 27(3):257–264

    Google Scholar 

  • Vanli OA, Castillo ED (2014) Statistical process control in manufacturing. In: Baillieul J, Samad T (eds) Encyclopedia of systems and control. Springer, Berlin, pp 1319–1324

    Google Scholar 

  • Weerasinghe A, Zhu C (2016) Optimal inventory control with path-dependent cost criteria. Stoch Process Their Appl 126(6):1585–1621

    MathSciNet  MATH  Google Scholar 

  • Woodall WH (1984) On the Markov chain approach to the two-sided CUSUM procedure. Technometrics 26(1):41–46

    MATH  Google Scholar 

  • Woodall WH (1985) The statistical design of quality control charts. J R Stat Soc Ser D (Stat) 34(2):155–160

    Google Scholar 

  • Woodall WH (1986) Weaknesses of the economic design of control charts. Technometrics 28(4):408–409

    Google Scholar 

  • Xu S, Jeske DR (2018) Weighted EWMA charts for monitoring type I censored Weibull lifetimes. J Qual Technol 50(2):220–230

    Google Scholar 

  • Yang L, Sheu SH (2007) Economic design of the integrated multivariate EPC and multivariate SPC charts. Qual Reliab Eng Int 23(2):203–221

    Google Scholar 

  • Yeong WC, Khoo MB, Tham LK, Teoh WL, Rahim MA (2017) Monitoring the coefficient of variation using a variable sampling interval EWMA chart. J Qual Technol 49(4):380–401

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ahmadi-Javid.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: MATLAB code for MEWMA

Appendix A: MATLAB code for MEWMA

figure a

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmadi-Javid, A., Ebadi, M. Economic design of memory-type control charts: The fallacy of the formula proposed by Lorenzen and Vance (1986). Comput Stat 36, 661–690 (2021). https://doi.org/10.1007/s00180-020-01019-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00180-020-01019-6

Keywords

Navigation