Skip to main content

Advertisement

Log in

Using telomeric chromosomal aberrations to evaluate clastogen-induced genomic instability in mammalian cells

  • Review
  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Telomeres, the specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes, play a fundamental role in maintaining chromosomal stability and integrity, being one of the leading guardians of genome stability. In recent years, the identification and analysis of chromosomal aberrations involving telomeres has proven to be a unique tool to evaluate misrepaired and unrepaired chromosome damage in mammalian cells. Telomere instability constitutes an important source of genomic instability, a phenomenon characteristic of cancer cells, and also common in cells exposed to chemical or physical mutagens which induce chromosomal aberrations by producing chromosome breakage (clastogens). In the present review, we will focus on the chromosomal aberrations involving telomeres and their importance to determine the clastogen-induced genomic instability present in mammalian cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BFB:

Breakage-fusion-bridge

CF:

Compound fragment

DDR:

DNA damage response

DSB:

Double-strand break/s

EBV:

Epstein-Barr Virus

HR:

Homologous recombination

IC:

Incomplete chromosome

ICE:

Incomplete chromosome elements

IF:

Interstitial fragment

NHEJ:

Non-homologous end joining

ssDNA:

Single-stranded DNA

SSB:

Single-strand break/s

TF:

Terminal fragment

References

  • Ahmed W, Lingner J (2018) Impact of oxidative stress on telomere biology. Differentiation 99:21–27

    CAS  PubMed  Google Scholar 

  • Al-Wahiby S, Slijepcevic P (2005) Chromosomal abnormalities in BRCA1 deficient human and mouse cell lines. Cytogenet Genome Res 109:491–496

    CAS  PubMed  Google Scholar 

  • Arnoult N, Karlseder J (2015) Complex interactions between the DNA-damage response and mammalian telomeres. Nat Struct Mol Biol 22:859–866

    CAS  PubMed  PubMed Central  Google Scholar 

  • Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    CAS  PubMed  Google Scholar 

  • Ayouaz A, Raynaud C, Heride C, Revaud D, Sabatier L (2008) Telomeres: hallmarks of radiosensitivity. Biochimie 90:60–72

    CAS  PubMed  Google Scholar 

  • Azzalin CM, Lingner J (2008) Telomeres: the silence is broken. Cell Cycle 7:1161–1165

    CAS  PubMed  Google Scholar 

  • Bailey SM, Cornforth MN, Ullrich RL, Goodwin EH (2004a) Dysfunctional mammalian telomeres join with DNA double-strand breaks. DNA Repair 3:349–357

    CAS  PubMed  Google Scholar 

  • Bailey SM, Goodwin EH, Cornforth MN (2004b) Strand-specific fluorescence in situ hybridization: the CO-FISH family. Cytogenet Genome Res 107:14–17

    CAS  PubMed  Google Scholar 

  • Balajee AS, Hande MP (2018) History and evolution of cytogenetic techniques: current and future applications in basic and clinical research. Mutat Res 836:3–12

    CAS  Google Scholar 

  • Barnes RP, Fouquerel E, Opresko PL (2019) The impact of oxidative DNA damage and stress on telomere homeostasis. Mech Ageing Dev 177:37–45

    CAS  PubMed  Google Scholar 

  • Bejarano L, Bosso G, Louzame J, Serrano R, Gómez-Casero E, Martínez-Torrecuadrada J, Martínez S, Blanco-Aparicio C, Pastor J, Blasco MA (2019) Multiple cancer pathways regulate telomere protection. EMBO Mol Med 11:e10292

    PubMed  PubMed Central  Google Scholar 

  • Benkhaled L, Barrios L, Mestres M, Caballin MR, Ribas M, Barquinero JF (2006) Analysis of gamma-rays induced chromosome aberrations: a fingerprint evaluation with a combination of pan-centromeric and pan-telomeric probes. Int J Radiat Biol 82:869–875

    CAS  PubMed  Google Scholar 

  • Benkhaled L, Xunclá M, Caballín MR, Barrios L, Barquinero JF (2008) Induction of complete and incomplete chromosome aberrations by bleomycin in human lymphocytes. Mutat Res 637:134–141

    CAS  PubMed  Google Scholar 

  • Berardinelli F, Antoccia A, Cherubini R, De Nadal V, Gerardi S, Cirrone GA, Tanzarella C, Sgura A (2010) Transient activation of the ALT pathway in human primary fibroblasts exposed to high-LET radiation. Radiat Res 174:539–549

    CAS  PubMed  Google Scholar 

  • Berardinelli F, Antoccia A, Buonsante R, Gerardi S, Cherubini R, De Nadal V, Tanzarella C, Sgura A (2013) The role of telomere length modulation in delayed chromosome instability induced by ionizing radiation in human primary fibroblasts. Environ Mol Mutagen 54:172–179

    CAS  PubMed  Google Scholar 

  • Berardinelli F, Sgura A, Di Masi A, Leone S, Cirrone GA, Romano F, Tanzarella C, Antoccia A (2014) Radiation-induced telomere length variations in normal and in Nijmegen Breakage Syndrome cells. Int J Radiat Biol 90:45–52

    CAS  PubMed  Google Scholar 

  • Berardinelli F, Coluzzi E, Sgura A, Antoccia A (2017) Targeting telomerase and telomeres to enhance ionizing radiation effects in in vitro and in vivo cancer models. Mutat Res 773:204–219

    CAS  PubMed  Google Scholar 

  • Bettin N, Pegorar CO, Cusanelli E (2019) The emerging roles of TERRA in telomere maintenance and genome instability. Cells 8:246

    CAS  PubMed Central  Google Scholar 

  • Bhargava R, Fischer M, O’Sullivan RJ (2020) Genome rearrangements associated with aberrant telomere maintenance. Curr Opin Genet Dev 60:31–40

    CAS  PubMed  Google Scholar 

  • Blackburn EH (2005) Telomeres and telomerase: their mechanisms of action and the effects of altering their functions. FEBS Lett 579:859–862

    CAS  PubMed  Google Scholar 

  • Boei JJWA, Natarajan AT (1998) Combined use of chromosome painting and telomere detection to analyse radiation induced chromosomal aberrations in mouse splenocytes. Int J Radiat Biol 73:125–133

    CAS  PubMed  Google Scholar 

  • Boei JJWA, Vermeulen S, Fomina J, Natarajan AT (1998) Detection of incomplete exchanges and interstitial fragments in X-irradiated human lymphocytes using a telomeric PNA probe. Int J Radiat Biol 73:599–603

    CAS  PubMed  Google Scholar 

  • Boei JJWA, Vermeulen S, Natarajan AT (2000) Analysis of radiation-induced chromosomal aberrations using telomeric and centromeric PNA probes. Int J Radiat Biol 76:163–167

    CAS  PubMed  Google Scholar 

  • Boei JJWA, Vermeulen S, Mullenders LHF, Natarajan AT (2001) Impact of radiation quality on the spectrum of induced chromosome exchange aberrations. Int J Radiat Biol 77:847–857

    CAS  PubMed  Google Scholar 

  • Bolzán AD (2009) Cytogenetic evaluation of telomere dysfunction: chromosomal aberrations involving telomeres and interstitial telomeric sequences. In: Mancini L (ed) Telomeres: function, shortening and lengthening. Nova Science Publishers Inc., New York, pp 133–185

    Google Scholar 

  • Bolzán AD (2012) Chromosomal aberrations involving telomeres and interstitial telomeric sequences. Mutagenesis 27:1–15

    PubMed  Google Scholar 

  • Bolzán AD (2016) Telomere instability induced by anticancer drugs in mammalian cells. In: Larramendy M (ed) Telomere: a complex end of a chromosome. InTech Open Access Publisher, Rijeka, pp 119–141

    Google Scholar 

  • Bolzán AD, Bianchi MS (2004a) Detection of incomplete chromosome elements and interstitial fragments induced by bleomycin in hamster cells using a telomeric PNA probe. Mutat Res 554:1–8

    PubMed  Google Scholar 

  • Bolzán AD, Bianchi MS (2004b) Analysis of streptonigrin-induced incomplete chromosome elements and interstitial fragments in Chinese hamster cells using a telomeric PNA probe. Environ Mol Mutagen 44:277–282

    PubMed  Google Scholar 

  • Bolzán AD, Bianchi MS (2005) Analysis of streptozotocin-induced incomplete chromosome elements and excess acentric fragments in Chinese hamster cells using a telomeric PNA probe. Mutat Res 570:237–244

    PubMed  Google Scholar 

  • Bolzán AD, Bianchi MS (2006) Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 612:189–214

    PubMed  Google Scholar 

  • Bouffler SD, Morgan WF, Pandita TK, Slijepcevic P (1996) The involvement of telomeric sequences in chromosomal aberrations. Mutat Res 366:129–135

    CAS  PubMed  Google Scholar 

  • Brault ME, Autexier C (2011) Telomeric recombination induced by dysfunctional telomeres. Mol Biol Cell 22:179–188

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caradonna F (2015) Nucleoplasmic bridges and acrocentric chromosome associations as early markers of exposure to low levels of ionising radiation in occupationally exposed hospital workers. Mutagenesis 30:269–275

    CAS  PubMed  Google Scholar 

  • Chan SR, Blackburn EH (2004) Telomeres and telomerase. Philos Trans R Soc Lond Ser B Biol Sci 359:109–121

    CAS  Google Scholar 

  • Chavez A, Tsou AM, Johnson FB (2009) Telomeres do the (un)twist: helicase actions at chromosome termini. Biochim Biophys Acta 1792:329–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cherdyntseva V, Gagos S (2020) Chromosome extremities under the microscopy lens: molecular cytogenetics in telomere research. Curr Opin Genet Dev 60:69–76

    CAS  PubMed  Google Scholar 

  • Cheung AL, Deng W (2008) Telomere dysfunction, genome instability and cancer. Front Biosci 13:2075–2090

    CAS  PubMed  Google Scholar 

  • Chiodi I, Belgiovine C, Mondello C (2010) Telomerase and telomeric proteins: a life beyond telomeres. In: Gagnon AN (ed) Telomerase: composition, functions and clinical implications. Nova Science, New York, pp 35–58

    Google Scholar 

  • Cicconi A, Chang S (2020) Shelterin and the replisome: at the intersection of telomere repair and replication. Curr Opin Genet Dev 60:77–84

    CAS  PubMed  Google Scholar 

  • Cleal K, Baird DM (2020) Catastrophic endgames: emerging mechanisms of telomere-driven genomic instability. Trends Genet 36:347–359

    CAS  PubMed  Google Scholar 

  • Cusanelli E, Chartrand P (2015) Telomeric repeat-containing RNA TERRA: a noncoding RNA connecting telomere biology to genome integrity. Front Genet 6:1–9

    CAS  Google Scholar 

  • Denchi EL (2009) Give me a break: how telomeres suppress the DNA damage response. DNA Repair 8:1118–1126

    CAS  PubMed  Google Scholar 

  • Dewhurst SM (2020) Chromothripsis and telomere crisis: engines of genome instability. Curr Opin Genet Dev 60:41–47

    CAS  PubMed  Google Scholar 

  • Díaz Flaqué MC, Bianchi MS, Bolzán AD (2006) A comparative analysis of bleomycin-induced incomplete chromosome elements in two mammalian cell lines using a telomeric PNA probe. Environ Mol Mutagen 47:674–681

    Google Scholar 

  • Doksani Y (2019) The response to DNA damage at telomeric repeats and its consequences for telomere function. Genes 10:318

    CAS  PubMed Central  Google Scholar 

  • Draskovic I, Londono-Vallejo A (2014) Telomere recombination and the ALT pathway: a therapeutic perspective for cancer. Curr Pharm Des 20:6466–6471

    CAS  PubMed  Google Scholar 

  • Durante M, George K, Cucinotta FA (2006) Chromosomes lacking telomeres are present in the progeny of human lymphocytes exposed to heavy ions. Radiat Res 165:51–58

    CAS  PubMed  Google Scholar 

  • Feijoo P, Dominguez D, Tusell L, Genesca A (2014) Telomere-dependent genomic integrity: evolution of the fusion-bridge-breakage cycle concept. Curr Pharm Des 20:6375–6385

    CAS  PubMed  Google Scholar 

  • Fimon P, Wong HP, Silver AR, Slijepcevic P, Bouffler SD (2001) Long but dysfunctional telomeres correlated with chromosomal radiosensitivity in a mouse AML cell line. Int J Radiat Biol 77:1151–1162

    Google Scholar 

  • Fomina J, Darroudi F, Boei JJWA, Natarajan AT (2000) Discrimination between complete and incomplete chromosome exchanges in X-irradiated human lymphocytes using FISH with pan-centromeric and chromosome specific DNA probes in combination with telomeric PNA probe. Int J Radiat Biol 76:807–813

    CAS  PubMed  Google Scholar 

  • Fomina J, Darroudi F, Natarajan AT (2001) Accurate detection of true incomplete exchanges in human lymphocytes exposed to neutron radiation using chromosome painting in combination with a telomeric PNA probe. Int J Radiat Biol 77:1175–1183

    CAS  PubMed  Google Scholar 

  • Fomina J, Darroudi F, Natarajan AT (2002) Incomplete chromosome exchanges are not fingerprints of high LET neutrons. Radiat Prot Dosim 99:215–216

    CAS  Google Scholar 

  • Hoang SM, O’Sullivan RJ (2020) Alternative lengthening of telomeres: building bridges to connect chromosome ends. Trends Cancer 6:247–260

    CAS  PubMed  Google Scholar 

  • Hyeon Joo O, Hande MP, Lansdorp PM, Natarajan AT (1998) Induction of telomerase activity and chromosome aberrations in human tumour cell lines following X-irradiation. Mutat Res 401:121–131

    CAS  PubMed  Google Scholar 

  • Kamranvar SA, Chen X, Masucci MG (2013) Telomere dysfunction and activation of alternative lengthening of telomeres in B-lymphocytes infected by Epstein-Barr virus. Oncogene 32:5522–5530

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lacoste S, Wiechec E, dos Santos Silva AG, Guffei A, Williams G, Lowbeer M, Benedek K, Henriksson M, Klein G, Mai S (2010) Chromosomal rearrangements after ex vivo Epstein-Barr virus (EBV) infection of human B cells. Oncogene 29:503–515

    CAS  PubMed  Google Scholar 

  • Liu H, Xie Y, Zhang Z, Mao P, Liu J, Ma W, Zhao Y (2018) Telomeric recombination induced by DNA damage results in telomere extension and length heterogeneity. Neoplasia 20:905–916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wang L, Wang Z, Liu J-P (2019) Roles of telomere biology in cell senescence, replicative and chronological ageing. Cells 8:54

    CAS  PubMed Central  Google Scholar 

  • Luijten MNH, Lee JXT, Crasta KC (2018) Mutational game changer: chromothripsis and its emerging relevance to cancer. Mutat Res 777:29–51

    CAS  PubMed  Google Scholar 

  • Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28:2503–2510

    CAS  PubMed  PubMed Central  Google Scholar 

  • M’Kacher R, Maalouf EE, Ricoul M, Heidingsfelder L, Laplagne E, Cuceu C, Hempel WM, Colicchio B, Dieterlen A, Sabatier L (2014) New tool for biological dosimetry: reevaluation and automation of the gold standard method following telomere and centromere staining. Mutat Res 770:45–53

    PubMed  Google Scholar 

  • M’Kacher R, Colicchio B, Borie C, Junker S, Marquet V, Heidingsfelder L, Soehnlen K, Najar W, Hempel WM, Oudrhiri N, Wilhelm-Murer N, Miguet M, Arnoux M, Ferrapie C, Kerbrat W, Plesch A, Dieterlen A, Girinsky T, Voisin P, Deschenes G, Tabet AC, Yardin C, Bennaceur-Griscelli A, Fenech M, Carde P, Jeandidier E (2020) Telomere and centromere staining followed by M-FISH improves diagnosis of chromosomal instability and its clinical utility. Genes 11:475

    PubMed Central  Google Scholar 

  • Maciejowski J, de Lange T (2017) Telomeres in cancer: tumour suppression and genome instability. Nat Rev Mol Cell Biol 18:175–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maciejowski J, Li Y, Bosco N, Campbell PJ, de Lange T (2015) Chromothripsis and kataegis induced by telomere crisis. Cell 163:1641–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  • McHugh MM, Gawron LS, Matsui S, Beerman TA (2005) The antitumor enediyne C-1027 alters cell cycle progression and induces chromosomal aberrations and telomere dysfunction. Cancer Res 65:5344–5351

    CAS  PubMed  Google Scholar 

  • McKenna MJ, Robinson E, Goodwin EH, Cornforth MN, Bailey SM (2017) Telomeres and NextGen CO-FISH: Directional Genomic Hybridization (Telo-dGH™). Methods Mol Biol 1587:103–112

    CAS  PubMed  Google Scholar 

  • Mestres M, Caballín MR, Schmid E, Stephan G, Sachs R, Barrios L, Barquinero JF (2004) Analysis of α-particle induced chromosome aberrations in human lymphocytes, using pan-centromeric and pan-telomeric probes. Int J Radiat Biol 80:737–744

    CAS  PubMed  Google Scholar 

  • Mestres M, Benkhaled L, Caballín MR, Barrios L, Ribas M, Barquinero JF (2011) Induction of incomplete and complex chromosome aberrations by 30 kVp X rays. Radiat Res 175:201–207

    CAS  PubMed  Google Scholar 

  • Multani AS, Li C, Ozen M, Yadav M, Yu DF, Wallace S, Pathak S (1997) Paclitaxel and water-soluble poly (L-glutamic acid)-paclitaxel, induce direct chromosomal abnormalities and cell death in a murine metastatic melanoma cell line. Anticancer Res 17:4269–4274

    CAS  PubMed  Google Scholar 

  • Multani AS, Li C, Ozen M, Imam AS, Wallace S, Pathak S (1999) Cell-killing by paclitaxel in a metastatic murine melanoma cell line is mediated by extensive telomere erosion with no decrease in telomerase activity. Oncol Rep 6:39–44

    CAS  PubMed  Google Scholar 

  • Murnane JP (2012) Telomere dysfunction and chromosome instability. Mutat Res 730:28–36

    CAS  PubMed  Google Scholar 

  • O’Sullivan RJ, Karlseder J (2010) Telomeres: protecting chromosomes against genome instability. Nat Rev Mol Cell Biol 11:171–181

    PubMed  PubMed Central  Google Scholar 

  • Ojima M, Hamano H, Suzuki M, Suzuki K, Kodama S, Watanabe M (2004) Delayed induction of telomere instability in normal human fibroblast cells by ionizing radiation. J Radiat Res 45:105–110

    PubMed  Google Scholar 

  • Paeschke K, McDonald KR, Zakian VA (2010) Telomeres: structures in need of unwinding. FEBS Lett 584:3760–3772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pampalona J, Soler D, Genescà A, Tusell L (2010) Whole chromosome loss is promoted by telomere dysfunction in primary cells. Genes Chromosom Cancer 49:368–378

    CAS  PubMed  Google Scholar 

  • Paviolo NS, Quiroga IY, Castrogiovanni DC, Bianchi MS, Bolzán AD (2012) Telomere instability is present in the progeny of mammalian cells exposed to bleomycin. Mutat Res 734:5–11

    CAS  PubMed  Google Scholar 

  • Paviolo NS, Castrogiovanni DC, Bolzán AD (2014) The radiomimetic compound streptonigrin induces persistent telomere dysfunction in mammalian cells. Mutat Res 760:16–23

    CAS  PubMed  Google Scholar 

  • Paviolo NS, Santiñaque FF, Castrogiovanni DC, Folle GA, Bolzán AD (2015) The methylating agent streptozotocin induces persistent telomere dysfunction in mammalian cells. Mutat Res 794:17–24

    CAS  Google Scholar 

  • Pellestor F (2019) Chromoanagenesis: cataclysms behind complex chromosomal rearrangements. Mol Cytogenet 12:6

    PubMed  PubMed Central  Google Scholar 

  • Pellestor F, Paulasova P (2004) The peptide nucleic acids (PNAs): introduction to a new class of probes for chromosomal investigation. Chromosoma 112:375–380

    CAS  PubMed  Google Scholar 

  • Poon SS, Martens UM, Ward RK, Lansdorp PM (1999) Telomere length measurements using digital fluorescence microscopy. Cytometry 36:267–278

    CAS  PubMed  Google Scholar 

  • Popuri V, Hsu J, Khadka P, Horvath K, Liu Y, Croteau DL, Bohr VA (2014) Human RECQL1 participates in telomere maintenance. Nucleic Acids Res 42:5671–5688

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pottier G, Viau M, Ricoul M, Shim G, Bellamy M, Cuceu HWM, Sabatier L (2013) Lead exposure induces telomere instability in human cells. PLoS One 8:e67501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pujol-Canadell M, Puig R, Armengol G, Barrios L, Barquinero JF (2020) Chromosomal aberration dynamics through the cell cycle. DNA Repair 89:102838

    CAS  PubMed  Google Scholar 

  • Rao CV, Yamada HY, Yao Y, Dai W (2009) Enhanced genomic instabilities caused by deregulated microtubule dynamics and chromosome segregation: a perspective from genetic studies in mice. Carcinogenesis 30:1469–1474

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ricoul M, Gnana Sekaran TS, Brochard P, Herate C, Sabatier L (2019) γ-H2AX foci persistence at chromosome break suggests slow and faithful repair phases restoring chromosome integrity. Cancers 11:1397

    CAS  PubMed Central  Google Scholar 

  • Rodríguez P, Barquinero JF, Duran A, Caballín MR, Ribas M, Barrios L (2009) Cells bearing chromosome aberrations lacking one telomere are selectively blocked at the G2/M checkpoint. Mutat Res 670:53–58

    PubMed  Google Scholar 

  • Romaniuk A, Paszel-Jaworska A, Totoń E, Lisiak N, Holysz H, Królak A, Grodecka-Gazdecka S, Rubis B (2019) The non-canonical functions of telomerase: to turn off or not to turn off. Mol Biol Rep 46:1401–1411

    CAS  PubMed  Google Scholar 

  • Schmutz I, de Lange T (2016) Shelterin. Curr Biol 26:R397–R399

    PubMed  Google Scholar 

  • Sharma GG, Hall EJ, Dhar S, Gupta A, Rao PH, Pandita TK (2003) Telomere stability correlates with longevity of human beings exposed to ionizing radiations. Oncol Rep 10:1733–1736

    PubMed  Google Scholar 

  • Shay JW (2018) Telomeres and aging. Curr Op Cell Biol 52:1–7

    CAS  PubMed  Google Scholar 

  • Shay JW, Wright WE (2019) Telomeres and telomerase: three decades of progress. Nat Rev Genet 20:299–309

    CAS  PubMed  Google Scholar 

  • Shim G, Ricoul M, Hempel WM, Azzam EI, Sabatier L (2014) Crosstalk between telomere maintenance and radiation effects: a key player in the process of radiation-induced carcinogenesis. Mutat Res 760:1–17

    CAS  Google Scholar 

  • Storchová Z, Kloosterman WP (2016) The genomic characteristics and cellular origin of chromothripsis. Curr Opin Cell Biol 40:106–113

    PubMed  Google Scholar 

  • Stroik S, Hendrickson EA (2020) Telomere fusions and translocations: a bridge too far? Curr Opin Genet Dev 60:85–91

    CAS  PubMed  Google Scholar 

  • Undarmaa B, Kodama S, Suzuki K, Niwa O, Watanabe M (2004) X-ray-induced telomeric instability in Atm-deficient mouse cells. Biochem Biophys Res Commun 315:51–58

    CAS  PubMed  Google Scholar 

  • Uringa EJ, Lisaingo K, Pickett HA, Brind’Armour J, Rohde JH, Zelensky A, Essers J, Lansdorp PM (2012) RTEL1 contributes to DNA replication and repair and telomere maintenance. Mol Biol Cell 23:2782–2792

    CAS  PubMed  PubMed Central  Google Scholar 

  • Venkatesan S, Natarajan AT, Hande MP (2015) Chromosomal instability-mechanisms and consequences. Mutat Res 793:176–184

    CAS  Google Scholar 

  • Volleth M, Zenker M, Joksic I, Liehr T (2020) Long-term culture of EBV-induced human lymphoblastoid cell lines reveals chromosomal instability. J Histochem Cytochem 68:239–251

    CAS  PubMed  Google Scholar 

  • von Zglinicki T (2002) Oxidative stress shortens telomeres. Trends Biochem Sci 27:339–344

    Google Scholar 

  • Wu H, George K, Yang TC (1998) Estimate of true incomplete exchanges using fluorescence in situ hybridization with telomere probes. Int J Radiat Biol 73:521–527

    CAS  PubMed  Google Scholar 

  • Wu H, George K, Yang TC (1999) Estimate of the frequency of true incomplete exchanges in human lymphocytes exposed to 1 GeV/u Fe ions in vitro. Int J Radiat Biol 75:593–599

    CAS  PubMed  Google Scholar 

  • Yao Y, Dai W (2014) Genomic instability and cancer. J Carcinog Mutagen 5:1000165

    PubMed  PubMed Central  Google Scholar 

  • Zeegers D, Venkatesan S, Koh SW, Low GK, Srivastava P, Sundaram N, Sethu S, Banerjee B, Jayapal M, Belyakov O, Baskar R, Balajee AS, Hande MP (2017) Biomarkers of ionizing radiation exposure: a multiparametric approach. Genome Integr 8:6

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J-M, Zou L (2020) Alternative lengthening of telomeres: from molecular mechanisms to therapeutic outlooks. Cell Biosci 10:30

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by grants from the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP No. 0182), the Comisión de Investigaciones Científicas de la Provincia de Buenos Aires (CICPBA), and the University of La Plata (UNLP) of Argentina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro D. Bolzán.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Responsible Editor: Beth Sullivan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bolzán, A.D. Using telomeric chromosomal aberrations to evaluate clastogen-induced genomic instability in mammalian cells. Chromosome Res 28, 259–276 (2020). https://doi.org/10.1007/s10577-020-09641-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-020-09641-2

Keywords

Navigation