Skip to main content
Log in

Sedimentary environment and depositional sequences of the Oligocene Qom Formation in Central Iran based on micro-facies and microtaphofacies analysis

  • Original Article
  • Published:
Carbonates and Evaporites Aims and scope Submit manuscript

Abstract

Oligocene deposits of the Qom Formation in central Iran were studied to reconstruct the sedimentary environment and depositional sequences based on microfacies (MF) and micro-taphofacies (MTF) analysis. A total of 310 thin sections (210 and 100 from Vidoje and Neizar respectively) were studied to differentiate eight microfacies (MF) and five microtaphofacies (MTF) types. These MFs are representative of a variety of depositional environments including restricted and semi-restricted lagoons as well as open marine settings. Overall, the distribution of MFs at the two sites suggests an open-shelf setting for the Qom Formation. Three complete third-order depositional sequences together with one incomplete sequence were identified. In the Rupelian stage, sea level changes in the Neizar and Vidoje areas were most likely affected by tectonics controlled by regional faults, whereas regional sea-level fluctuations of the south Tethyan Seaway and the Paratethys Basin controlled sea-level changes in the Chattian stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

adapted from Heydari 2008). b Oligocene paleogeography of the Tethyan seaway and location of the Esfahan-Sirjan fore-arc and the Qom back-arc sub-basins (modified from Harzhauser and Piller 2007 and Reuter et al. 2009). c Schematic block diagrams illustrating the development of the Esfahan-Sirjan and the Qom basins in Oligocene time (modified from Reuter et al. 2009)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Abaie I, Ansari HJ, Badakhshan A, Jaafari A (1964) History and development of the Alborz and Sarajeh fields of Central Iran. Bull Iran Pet Inst 15:561–574

    Google Scholar 

  • Abich H (1858) Vergleichende Grrundzuge der Geologie des Kaukasus wie der Armenischen und Nord Persischen Gebrige (Prodromus einer Geologie der Kaukasischen lander). Mém Acad Imp Sci St-Pétersbourg 7:359–534

    Google Scholar 

  • Afzal J, Williams M, Leng MJ, Aldridge RJ (2011) Dynamic response of the shallow marine benthic ecosystem to regional and pan-Tethyan environmental change at the Paleocene-Eocene boundary. Palaeogeogr Palaeoclimatol Palaeoecol 309:141–160

    Google Scholar 

  • Aghanabati A (2006) Geology of Iran. Geological Survey of Iran, Teheran

    Google Scholar 

  • Allison PA, Bottjer DJ (2011) Taphonomy: process and bias through time. Springer, New York

    Google Scholar 

  • Amirshahkarami M, Vaziri-Moghaddam H, Taheri A (2007) Paleoenvironmental model and sequence stratigraphy of the Asmari Formation in southwest Iran. Hist Biol 19:173–183

    Google Scholar 

  • Beavington-Penney SJ (2004) Analysis of the effects of abrasion on the test of Palaeonummulites venosus: implications for the origin of nummulithoclastic sediments. Palaios 19:143–155

    Google Scholar 

  • Beavington-Penney SJ, Wright VP, Woelkerling WJ (2004) Recognising macrophyte-vegetated environments in the rock record: a new criterion using ‘hooked’ forms of crustose coralline red algae. Sediment Geol 166:1–9

    Google Scholar 

  • Beavington-Penney SJ, Wright VP, Racey A (2006) The middle Eocene Seeb Formation of Oman: an investigation of acyclicity, stratigraphic completeness, and accumulation rates in shallow marine carbonate settings. J Sediment Res 76:1137–1161

    Google Scholar 

  • Berberian M (2005) The 2003 Bam urban earthquake: a predictable seismotectonic pattern along the western margin of the rigid Lut block, southeast Iran. Earthq Spectra 21:35–99

    Google Scholar 

  • Berberian M, King GCP (1981) Towards a paleogeography and tectonic evolution of Iran. Can J Earth Sci 18:210–265

    Google Scholar 

  • Beresi MS, Cabaleri NG, Löser H, Armella C (2016) Coral patch reef system and associated facies from southwestern Gondwana: paleoenvironmental evolution of the Oxfordian shallow-marine carbonate platform at Portada Covunco, Neuquén Basin, Argentina. Facies 63:1–22

    Google Scholar 

  • Bover-Arnal T, Ferrandez-Canadell C, Aguirre J, Esteban M, Fernandez-Carmona J, Albert-Villanueva E, Salas R (2017) Late Chattian platform carbonates with benthic foraminifera and coralline algae from the SE Iberian plate. Palaios 32:61–82

    Google Scholar 

  • Bozorgnia F (1966) Qom formation stratigraphy of the Central basin of Iran and its intercontinental position. Bull Iran Pet Inst 24:69–75

    Google Scholar 

  • Brachert TC, Betzler C, Braga JC, Martin JM (1998) Microtaphofacies of a warm-temperate carbonate ramp (uppermost Tortonian/lowermost Messinian, southern Spain). Palaios 13:459–475

    Google Scholar 

  • Brandano M, Frezza V, Tomassetti L, Cuffaro M (2009) Heterozoan carbonates in oligotrophic tropical waters: the Attard member of the lower coralline limestone formation (Upper Oligocene, Malta). Palaeogeogr Palaeoclimatol Palaeoecol 274:54–63

    Google Scholar 

  • Brandano M, Lipparini L, Campagnoni V, Tomassetti L (2012) Downslope-migrating large dunes in the Chattian carbonate ramp of the Majella Mountains (Central Apennines, Italy). Sediment Geol 255:29–41

    Google Scholar 

  • Brandano M, Cornacchia I, Raffi I, Tomassetti L (2016) The Oligocene-Miocene stratigraphic evolution of the Majella carbonate platform (Central Apennines, Italy). Sediment Geol 333:1–14

    Google Scholar 

  • Briguglio A, Hohenegger J (2009) Nummulitid hydrodynamics: an example using Nummulites globulus Leymerie. Boll Soc Paleontol Ital 48:105–111

    Google Scholar 

  • Catuneanu O, Bhattacharya JP, Blum MD, Dalrymple RW, Eriksson PG, Fielding CR, Fisher WL, Galloway WE, Gianolla P, Gibling MR, Giles KA, Holbrook JM, Jordan R, Kendall CGSC, Macurda B, Martinsen OJ, Miall AD, Nummedal D, Posamentier HW, Pratt BR, Shanley KW, Steel RJ, Strasser A, Tucker ME (2010) Sequence stratigraphy: common ground after three decades of development. First Break 28:21–34

    Google Scholar 

  • Catuneanu O, Galloway W, Kendall Ch, Maill H, Tucker M (2011) Sequence stratigraphy: methodology and nomenclature. Newsl Stratigr 44:173–245

    Google Scholar 

  • Chan SA, Kaminski MA, Al-Ramadan K, Babalola LO (2017) Foraminiferal biofacies and depositional environments of the Burdigalian mixed carbonate and siliciclastic Dam Formation, Al-Lidam area, Eastern Province of Saudi Arabia. Palaeogeogr Palaeoclimatol Palaeoecol 469:122–213

    Google Scholar 

  • Ćosović V, Drobne K, Ibrahimpašić H (2012) The role of taphonomic features in the palaeoecological interpretation of Eocene carbonates from the Adriatic carbonate platform (PgAdCP). Neues Jahrb Geol Paläontol 265:101–112

    Google Scholar 

  • Dunham RJ (1962) Classification of carbonate rocks according to depositional texture. In: Ham WE (ed) Classification of carbonate rocks. A symposium. American Association Petroleum Geologist, New York, pp 108–121

    Google Scholar 

  • Eder W, Briguglio A, Hohenegger J (2016) Growth of Heterostegina depressa under natural and laboratory conditions. Mar Micropaleontol 122:27–43

    Google Scholar 

  • Eder W, Hohenegger J, Torres-Silva AI, Briguglio A (2017) Morphometry of the larger foraminifera Heterostegina explaining environmental dependence, evolution and paleogeographic diversification. In: Proceedings of the 13th international coral reefs symposium, Honolulu, pp 195–206. https://coralreefs.org/conferences-and-workshops/proceedings-of-icrs13-2016

  • Ehrenberg SN, Picard NAH, Laursen GV, Monibi S, Mossadegh ZK, Svana TA, Aqrawi AAM, McArthur JM, Thirlwall MF (2007) Strontium isotope stratigraphy of the Asmari Formation (Oligocene–Lower Miocene), SW Iran. J Petrol Geol 30:107–128

    Google Scholar 

  • Embry AF, Klovan JE (1971) Late Devonian reef tract on northeastern Banks Island, Northwest territories. Bull Can Pet Geol 1:730–781

    Google Scholar 

  • Emery D, Myers K (1996) Sequence stratigraphy. BP exploration. Stockley Park, London

    Google Scholar 

  • Flügel E (1972) Mikrofazielle Untersuchungen in der alpinen Trias: Methoden und Probleme. Mitt Ges Geol Bergbaustud 21:9–64

    Google Scholar 

  • Flügel E (1982) Microfacies analysis of limestones. Springer, Berlin

    Google Scholar 

  • Flügel E (2010) Microfacies of carbaonate rocks. Springer, Berlin

    Google Scholar 

  • Furrer MA, Soder PA (1955) The Oligo–Miocene marine formation in the Qom region (Central Iran). In: Proceedings of the 4th World Petroleum Congress, Rome, Section I/A/5, pp 267–277

  • Gansser A, (1955) New aspects of the geology in Central Iran. In: Proceedings of the 4th World Petroleum Congress, Rome, Section I/A/5, pp 279–300

  • Geel H (2000) Recognition of stratigraphic carbonat platform and slope deposits: empirical models based on microfasies analysis of paleogene deposits in southestern Spain. Palaeogeogr Palaeoclimatol Palaeoecol 1550:211–238

    Google Scholar 

  • Ghalamghash A, Babakhani R (1996)Geological map, scale: M = 1: 100,000. Kahak the Geological survey and Mineral Exploration of Iran, Tehran

  • Gonera M (2012) Palaeoecology of the Middle Miocene foraminifera of the Nowy Sącz Basin (Polish Outer Carpathians). Geol Q 56:107–116

    Google Scholar 

  • Greenstein BJ, Pandolfi JM (2003) Taphonomic alteration of reef corals: Effects of reef environment and coral growth form II: The Florida Keys. Palaios 18:495–509

    Google Scholar 

  • Halfar J, Godinez-Orta L, Mutti M, Valdez-Holguín JE, Borges JM (2004) Nutrient and temperature controls on modern carbonate production: an example from the Gulf of California, Mexico. Geology 32:213–216

    Google Scholar 

  • Hallock P (1999) Symbiont-bearing foraminifera. In: Gupta BKS (ed) Modern foraminifera. Kluwer Academic Publishers, Dordrecht, pp 123–139

    Google Scholar 

  • Hallock P, Glenn EC (1986) Larger foraminifera: a tool for paleoenvironmental analysis of Cenozoic carbonate depositional facies. Palaios 1:55–64

    Google Scholar 

  • Hallock P, Röttger R, Wetmore K (1991) Hypothesis on form and function in Foraminifera. In: Lee JJ, Anderson OR (eds) Biology of foraminifera. Academic Press Ltd, London, pp 41–72

    Google Scholar 

  • Handford CR, Loucks RG (1993) Carbonate depositional sequences and systems tracts-responses of carbonate platforms to relative sea level changes. In: Loucks RG, Sarg JF (eds) Carbonate sequence stratigraphy—recent developments and applications. AAPG Memoir, New York, pp 3–41

    Google Scholar 

  • Haq BU, Shutter SR (2008) Sequences (SEPM Global or Tethyan). TS Creator: Time Scale Creator [Internet]. 2005–2013. Geologic Time Scale Foundation. https://tscreator.com

  • Harzhauser M, Piller WE (2007) Benchmark data of a changing sea—palaeogeography, palaeobiogeography and events in the Central Paratethys during the Miocene. Palaeogeogr Palaeoclimatol Palaeoecol 253:8–31

    Google Scholar 

  • Heydari E (2008) Tectonics versus eustatic control on supersequences of the Zagros Mountains of Iran. Tectonophysics 451:56–70

    Google Scholar 

  • Hohenegger J (2004) Depth coenoclines and environmental considerations of western Pacific larger foraminifera. J Foraminiferal Res 34:9–33

    Google Scholar 

  • Hohenegger J (2009) Functional shell geometry of symbiont-bearing benthic foraminifera. Galaxea J Coral Reef Stud 11:81–89

    Google Scholar 

  • Hohenegger J (2011) Growth-invariant meristic characters. Tools to reveal phylogenetic relationships in Nummulitidae (Foraminifera). Turk J Earth Sci 20:655–681

    Google Scholar 

  • Hottinger L (2000) Functional morphology of benthic Foraminiferal shells, envelopes of cells beyond measure. Micropaleontology 46:57–86

    Google Scholar 

  • Kashfi MS (1988) Evidence for non-collision geology in the Middle East. J Petrol Geol 11:443–460

    Google Scholar 

  • Kasiri AH (2017) Biostratigraphy, microfacies, and sedimentary environment of the Qom Formation in the Vidoje area (south-west of Kashan). MSc Dissertation, University of Isfahan

  • Knoerich AC, Mutti M (2003) Controls of facies and sediment composition on the diagenetic pathway of shallow-water Heterozoan carbonates: the Oligocene of the Maltese Islands. Int J Earth Sci 92:494–510

    Google Scholar 

  • Langer MR, Hottinger L (2000) Biogeography of selected" larger" foraminifera. Micropaleontology 46:105–126

    Google Scholar 

  • Loftus WK (1855) On the geology of portions of the Turko-Persian frontier, and of the districts adjoining. Q J Geol Soc Lond 11:247–344

    Google Scholar 

  • Mahmudi Purnajjari S (2015) Biostratigraphy and microfacies analysis and depositional environment of the Qom Formation in the Neizar area (south-east of Salafchegan). MSc Dissertation, University of Isfahan

  • Mateu-Vicens G, Hallock P, Brandano M, Demchuk T, Gary A (2009) Test shape variability of Amphistegina d’Orbigny 1826 as a paleobathymetric proxy: application to two Miocene examples. Geologic problems solving with microfossils. J Sediment Res A Sediment Petrol Process 93:67–82

    Google Scholar 

  • Mohammadi E, Ameri H (2015) Biotic components and biostratigraphy of the Qom Formation in northern Abadeh, Sanandaj-Sirjan fore-arc basin, Iran (northeastern margin of the Tethyan Seaway). Arab J Geosci 8:10789–10802

    Google Scholar 

  • Mohammadi E, Safari A, Vaziri-Moghaddam H, Vaziri MR, Ghaedi M (2011) Microfacies analysis and paleoenviornmental interpretation of the Qom Formation, South of the Kashan, Central Iran. Carbonates Evaporites 26:255–271

    Google Scholar 

  • Mohammadi E, Hasanzadeh-Dastgerdi M, Ghaedi M, Dehghan R, Safari A, Vaziri-Moghaddam H, Baizidi C, Vaziri MR, Sfidari E (2013) The Tethyan Seaway Iranian Plate Oligo-Miocene deposits (the Qom Formation): distribution of Rupelian (Early Oligocene) and evaporate deposits as evidences for timing and trending of opening and closure of the Tethyan Seaway. Carbonates Evaporites 28:321–345

    Google Scholar 

  • Mohammadi E, Hasanzadeh-Dastgerdi M, Safari A, Vaziri-Moghaddam H (2018) Microfacies and depositional environments of the Qom Formation in Barzok area, SW Kashan, Iran. Carbonates Evaporites 1:1–14

    Google Scholar 

  • Morley CK, Kongwung B, Julapour AA, Abdolghafourian M, Hajian M, Waples D, Warren J, Otterdoom H, Srisuriyon K, Kazemi H (2009) Structural development of a major late Cenozoic basin and transpressional belt in central Iran: the Central Basin in the Qom-Saveh area. Geosphere 5:325–362

    Google Scholar 

  • Murray JW (2006) Ecology and applications of benthic foraminifera. Cambridge University Press, London

    Google Scholar 

  • Nebelsick JH, Bassi D (2000) Diversity, growth forms and taphonomy: key factors controlling the fabric of coralline algae dominated shelf carbonates. Geol Soc Lond Spec Publ 178:89–107

    Google Scholar 

  • Nebelsick JH, Bassi D, Rasser MW (2011) Microtaphofacies: exploring the potential for taphonomic analysis in carbonates. In: Allison PA, Bottjer DJ (ed) Taphonomy. Aims and scope topics in geobiology book, series. Springer, Dordrecht, pp 337–373

  • Nebelsick JH, Bassi D, Lempp J (2013) Tracking paleoenvironmental changes in coralline algal-dominated carbonates of the Lower Oligocene Calcareniti di Castelgomberto formation (Monti Berici, Italy). Facies 59:133–148

    Google Scholar 

  • Payros A, Pujalte V, Tosquella J, Orue-Etxebarria X (2010) The Eocene storm-dominated foralgal ramp of the western Pyrenees (Urbasa-Andia Formation): an analogue of future shallow-marine carbonate systems. Sediment Geol 228:184–204

    Google Scholar 

  • Pomar L (2001) Types of carbonate platforms: a genetic approach. Basin Res 13:313–334

    Google Scholar 

  • Pomar L, Haq BU (2016) Decoding depositional sequences in carbonate systems: concepts vs experience. Glob Planet Change 146:190–225

    Google Scholar 

  • Pomar L, Mateu-Vicens G, Morsilli M, Brandano M (2014) Carbonate ramp evolution during the late Oligocene (Chattian), Salento Peninsula, southern Italy. Palaeogeogr Palaeoclimatol Palaeoecol 404:109–132

    Google Scholar 

  • Pomar L, Esteban M, Martinez W, Espino D, de Ott VC, Benkovics L, Leyva TC (2015) Oligocene-Miocene carbonates of the Perla Field, Offshore Venezuela: depositional model and facies architecture. In: Mann Bartolini PC (ed) Petroleum geology and potential of the Colombian Caribbean margin. The American Association of Petroleum Geologist, Oklahoma, pp 647–674

    Google Scholar 

  • Pomar L, Baceta JI, Hallock P, Mateu-Vicens G, Basso D (2017) Reef building and carbonate production modes in the west-central Tethys during the Cenozoic. Mar Petrol Geol 83:261–304

    Google Scholar 

  • Quaranta F, Tomassetti L, Vannucci G, Brandano M (2012) Coralline algae as environmental indicators: a case study from the Attard member (Chattian, Malta). Geodiversitas 34:151–166

    Google Scholar 

  • Radfar J (1993)Geological map, scale: M = 1: 100,000. Kashan the Geological survey and Mineral Exploration of Iran, Tehran

  • Read JF (1982) Carbonate platforms of passive (extensional) continental margins: types, characteristics and evolution. Tectonophysics 81:195–212

    Google Scholar 

  • Read JF (1985) Carbonate platform facies models. AAPG Bull 69:1–21

    Google Scholar 

  • Renema W (2006) Large benthic foraminifera from the deep photic zone of a mixed siliciclastic-carbonate shelf off East Kalimantan, Indonesia. Mar Micropaleontol 58:73–82

    Google Scholar 

  • Reuter M, Piller WE, Harzhauser M, Mandic O, Berning B, Rögl F, Kroh A, Aubry MP, Wielandt-Schuster U, Hamedani A (2009) The Oligo-/Miocene Qom Formation (Iran): evidence for an early Burdigalian restriction of the Tethyan Seaway and closure of its Iranian gateways. Int J Earth Sci 98:627–650

    Google Scholar 

  • Riegl B, Poiriez A, Janson X, Bergman KL (2010) The gulf: facies belts, physical, chemical, and biological parameters of sedimentation on a carbonate ramp. In: Westphal H, Reigl B, Eberli GP (eds) Carbonate depositional systems: assessing dimensions and controlling parameters. Springer, New York, pp 145–213

    Google Scholar 

  • Romero J, Caus E, Rosell J (2002) A model for the palaeoenvironmental distribution of larger foraminifera based on late Middle Eocene deposits on the margin of the South Pyrenean basin (NE Spain). Palaeogeogr Palaeoclimatol Palaeoecol 179:43–56

    Google Scholar 

  • Sarg JF (1988) Carbonate sequence stratigraphy. In:Wilgus CK, Hastings BSC, Kendall GSC, Posamentier HW, Ross CA, Van Wagoner JC (ed) Sea-level changes: an integrated approach. Society for Sedimentary Geology, Special Publication, London, pp 155–181

  • Sarkar S (2017) Microfacies analysis of larger benthic foraminifera-dominated Middle Eocene carbonates: a palaeoenvironmental case study from Meghalaya, NE India (Eastern Tethys). Arab J Geosci 5:1–13

    Google Scholar 

  • Seddighi M, Vaziri-Moghaddam H, Taheri A, Ghabeishavi A (2012) Depositional environment and constraining factors on the facies architecture of the Qom Formation, Central Basin. Iran Hist Biol 24:91–100

    Google Scholar 

  • Silvestri G, Bosellini FR, Nebelsick JH (2011) Microtaphofacies analysis of lower Oligocene turbid-water coral assemblages. Palaios 26:805–820

    Google Scholar 

  • Stahl AF (1911) Persien. In: Handbuch der Regionalen Geologie.Heidelberg (Winter) Hft8, vol 5, no 6, p 46

  • Stöcklin J (1952) Stratigraphical investigation in the Qom-Arak-Gulpaigan-Delijan area. Iran Oil Company Report, p 95

  • Stocklin J, Setudehnia A (1991) Stratigraphic lexicon of Iran. Geological Survey of Iran Report, 18, p 376

  • Taheri A (2010) Paleoenvironmental model and sequence stratigraphy for the Oligo-Miocene foraminiferal limestone in east of Dogonbadan. Stratigr Sediment 40(3):15–30

    Google Scholar 

  • Taheri A, Vaziri-Moghaddam H, Seyrafian A (2008) Relationships between foraminiferal assemblages and depositional sequences in Jahrum Formation, Ardal area (Zagros Basin, SW Iran). Hist Biol 20:191–201

    Google Scholar 

  • Tietze E (1875) Ein Ausflug nach dem Siahkuh (Schwarzer Berg) in Persien. Mitt Österr Geogr Ges 18(8):257–267

    Google Scholar 

  • Tomassetti L, Benedetti A, Brandano M (2016) Middle Eocene seagrass facies from Apennine carbonate platforms (Italy). Sediment Geol 335:136–149

    Google Scholar 

  • Vakarcs G, Hardenbol J, Abreu VS, Vail PR, Várnai P, Tari G (1998) Oligocene-Middle Miocene depositional sequences of the central Paratethys and their correlation with regional stages. J Sediment Res A Sediment Petrol Process 60:209–231

    Google Scholar 

  • van Buchem FSP, Allan TL, Laursen GV, Lotfpour M, Moallemi A, Monibi S, Motiei H, Pickard NAH, Tahmasbi AR, Vedrenne V, Vincent B (2010) Regional stratigraphic architecture and reservoir types of the Oligo-Miocene deposits in the Dezful Embayment (Asmari and Pabdeh Formations), SW Iran. Geol Soc Lond Spec Publ 32:219–263

    Google Scholar 

  • Van Wagoner JC, Posamentier HW, Mitchum RMJR (1988) An overview of the fundamentals of sequence stratigraphy and key definition. In:Wilgus Hastings CKBS, Kendall CGSC, Posamentier HW, Ross CA, Van Wagoner JC (ed) Sea-level changes: an integrated approach. SEPM (Society for Sedimentary Geology), New York, pp 39–45

  • Vaziri-Moghaddam H, Kimiagari M, Taheri A (2006) Depositional environment and sequence stratigraphy of the Oligo-Miocene Asmari Formation in SW Iran. Facies 52:41–51

    Google Scholar 

  • Wilson JL (1975) Carbonate facies in geologic history. Springer, New York

    Google Scholar 

  • Wilson ME, Evans MJ (2002) Sedimentology and diagenesis of Tertiary carbonates on the Mangkalihat Peninsula, Borneo: implications for subsurface reservoir quality. Mar Petrol Geol 19:873–900

    Google Scholar 

  • Yordanova EK, Hohenegger J (2007) Studies on settling, traction and entrainment of larger benthic foraminiferal tests: implications for accumulation in shallow marine sediments. Sedimentology 54:1273–1306

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of Isfahan for the financial support. We are grateful for the useful suggestions and helpful comments of Dr. Liviu Giosan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amrollah Safari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, A., Ghanbarloo, H., Kasiri, A. et al. Sedimentary environment and depositional sequences of the Oligocene Qom Formation in Central Iran based on micro-facies and microtaphofacies analysis. Carbonates Evaporites 35, 100 (2020). https://doi.org/10.1007/s13146-020-00633-1

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13146-020-00633-1

Keywords

Navigation