Skip to main content
Log in

Seismic vulnerability analysis of medieval rammed earth fortifications in southeastern Spain

  • Original Research
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

This paper analyses the seismic vulnerability of various rammed earth medieval fortifications situated in Southeastern Spain, where seismic events with intensity over VII have taken place in the last millennium, using the vulnerability index method. This method begins with the choice of a certain initial value, V0, of the vulnerability index, which is obtained from a preset range between maximum, \({\text{V}}_{0}^{ {\rm max} }\), and minimum, \({\text{V}}_{0}^{ {\rm min} }\), values, which are likely for vulnerability indices, according to the constructive material characteristics and based on expert judgments. Rammed earth structures have not yet been studied using the vulnerability index method, despite the fact that they are quite common medieval structures in Spain and other countries in the Mediterranean region, many of which are also heritage sites, and hence are legally protected. Intervention priorities on them have been determined from the results in this paper with the aim of reducing their seismic vulnerability. For the different rammed earth techniques, a proposed primary value Vp = 0.76 together with some other material modifiers (construction typology and quality, current material porosity and density, and superficial deterioration) make the range of values V0 vary between 0.58 and 1.02. Moreover, structural behavior modifiers (MK) have been adapted to the various defensive rammed earth structural typologies used for these fortifications allowing us to obtain individualized vulnerability index values. Three rammed earth fortifications damaged by historical earthquakes and located in SE Spain have been used to validate the method, in which values of V0med range between 35.2 and 89.1% and upwards and the vulnerability index IVmed may vary between 27.9 and 70.7% and upwards as compared to those used by other authors for castles. Besides, the proposed method has been used by carefully choosing six rammed earth fortifications (two towers, two walls and two castles) in SE Spain which are representative of different construction systems, structural typologies and topographies. Furthermore, the mean damage grade and the probability of its occurrence is determined for each fortification based on PGA data and site effects, taking into account a probabilistic seismic scenario for a 975 year return period, in accordance with existing legislation. In the end, direct relations are established between the seismic vulnerability and the types of material and the typology of the fortifications. We have carried out a sensibility analysis in order to learn about the influence of the constructive technique, the material condition and the structural typology on the damage grade value. The results show that lime-crusted rammed earth technique and tower typologies are the most vulnerable structures while topography is somehow less important. The results suggest that for half of the structures analyzed for the given scenario the probabilities are above 80% for damage grade 4 and 5 (EMS-98).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Authors

Fig. 2

Source: Authors

Fig. 3
Fig. 4

Source: Authors

Fig. 5

Source: Authors

Fig. 6

Source: Authors

Fig. 7

Source: Authors

Fig. 8
Fig. 9
Fig. 10
Fig. 11

Source: Autors

Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Aguado JLP, Ferreira TM, Lourenço PB (2018) The use of a large-scale seismic vulnerability assessment approach for masonry façade walls as an effective tool for evaluating, managing and mitigating seismic risk in historical centers. Int J Architect Herit 12(7–8):1259–1275. https://doi.org/10.1080/15583058.2018.1503366

    Article  Google Scholar 

  • Aymat C (2007) Arquitectura de tierra: fábricas de adobe y tapial. Master de Restauración y Rehabilitación del Patrimonio. Universidad de Alcalá de Henares A 2:1–36 (in Spanish)

    Google Scholar 

  • Azañón JM, Azor A, Booth-Rea G, Torcal F (2004) Small-scale faulting, topographic steps and seismic ruptures in the Alhambra (Granada, southeast Spain). J Quat Sci 19(3):219–227. https://doi.org/10.1002/jqs.838

    Article  Google Scholar 

  • Benito B, Gaspar-Escribano JM, García-Mayordomo J, Jiménez E, García-Rodríguez MJ (2006) Proyecto RISMUR. Evaluación de la Peligrosidad Sísmica, volumen 1, Instituto Geográfico Nacional y Protección Civil de Murcia (in Spanish)

  • Benito B, Jiménez E, García-Rodriguez MJ, Gaspar-Escribano JM, Pastor JA, Navarro M, Murphy P (2007) Evaluación de la peligrosidad y el riesgo sísmico en Andalucía. Informe final del proyecto SISMOSAN. Apéndice 1 (in Spanish)

  • Benito B, Navarro M, Vidal F, Gaspar-Escribano JM, García-Rodriguez MJ, Martínez-Solares JM (2010) A new seismic hazard assessment in the region of Andalusia (Southern Spain). Bull Earthq Eng 8:739–766. https://doi.org/10.1007/s10518-010-9175-9

    Article  Google Scholar 

  • BOE (1985) Ley 16/1985, de 25 de junio, del Patrimonio Histórico Español. Boletín Oficial del Estado 29:20342–20352 (in Spanish)

    Google Scholar 

  • BOE (2002) Real Decreto 997/2002, de 27 de septiembre, por el que se aprueba la norma de construcción sismorresistente: parte general y edificación (NCSE-02). Boletín Oficial del Estado (in Spanish)

  • BOE (2006) Código Técnico de la Edificación. Seguridad estructural. Fábricas de ladrillo, Boletín Oficial del Estado (in Spanish)

    Google Scholar 

  • Cherif S, Chourak M, Abed M, Pujades L (2017) Seismic risk in the city of Al Hoceima (north of Morocco) using the vulnerability index method, applied in Risk-UE project. Nat Hazards 85(1):329–347. https://doi.org/10.1007/s11069-016-2566-8

    Article  Google Scholar 

  • CNIG (2013) Actualización de mapas de peligrosidad sísmica de España 2012. Centro Nacional de Información Geográfica, p 267 (in Spanish)

  • Comartin CD, Niewiarowski RW, Rojah C (1996) Seismic evaluation and retrofit of concrete buildings (vol 1). Seismic Safety Commission, State of California

  • Eurocode-6 (2006) Eurocode 6-design of masonry structures-part 3: simplified calculation methods for unreinforced masonry structures

  • Eurocode-8 (2005) Eurocode 8-design of structures for earthquake resistance. Part 1, 1998-1

  • Feriche M (2012) Escenarios de daños sísmicos en la ciudad de Granada. PhD Thesis. University of Granada (in Spanish)

  • Gandreau D, Delboy L (2012) World heritage inventory of earthen architecture. CRATerre-ENSAG

  • García-Mayordomo J, Gaspar JM, Benito B (2007) Seismic hazard assessment of the province of Murcia (SE Spain): analysis of source contribution to hazard. J Seismol 11:453–471

    Article  Google Scholar 

  • Garrido J, Gutiérrez ML (2015) Andalusian cultural heritage and natural hazards prevention. In: Engineering geology for society and territory—volume 8: preservation of cultural heritage, pp 437–440. https://doi.org/10.1007/978-3-319-09408-3_76

  • Giovinazzi S (2005) The vulnerability assessment and the damage scenario in seismic risk analysis. PhD thesis, Technical University Carolo-Wilhelmina, Braunschweig, Germany, and University of Florence, Italy

  • Goded T (2010) Evaluación del riesgo sísmico en la ciudad de Málaga (Seismic risk asessment in the city of Málaga). PhD thesis, Universidad Complutense de Madrid, Madrid, Spain (in Spanish)

  • Goded T, Irizarry J, Buforn E (2012) Vulnerability and risk analysis of monuments in Málaga city’s historical centre (Southern Spain). Bull Earthq Eng 10(3):839–861. https://doi.org/10.1007/s10518-011-9321-z

    Article  Google Scholar 

  • Goded T, Lewis A, Stirling M (2018) Seismic vulnerability scenarios of Unreinforced Masonry churches in New Zealand. Bull Earthq Eng 16(9):3957–3999. https://doi.org/10.1007/s10518-018-0351-7

    Article  Google Scholar 

  • González T, Alvarez M, Casas A (1997) Estudio de los materiales y de las fábricas de la torre de Comares de la Alhambra. Cuadernos de La Alhambra 33:95–104 (in Spanish)

    Google Scholar 

  • Graciani A, Tabales MA (2008) El tapial en el área sevillana. Avance cronotipológico estructural. Arqueología de la Arquitectura, 5. https://doi.org/10.3989/arq.arqt.2008.93 (in Spanish)

  • Grünthal G (ed) (1998) European Macroseismic Scale 1998 (EMS-98). Cahiers du Centre Européen de Géodynamique et de Séismologie 15. Luxembourg

  • Gutiérrez-Carrillo M.L., Bestué I., Molina J.C. (2019a) Manual de mantenimiento para las fortificaciones de tierra. Universidad de Granada, p 181 (in Spanish)

  • Gutiérrez-Carrillo ML, Arizzi A, Bestué I, Sebastián E (2019b) Study of the state of conservation and the building materials used in defensive constructions in South-Eastern Spain: the example of Mula Castle in Murcia. Int J Archit Herit. https://doi.org/10.1080/15583058.2019.1630516

    Article  Google Scholar 

  • Higuera A, Delgado AM (1999) La almunia de los Alijares según dos autores: ibnAsim e Ibn Zamark. Cuadernos de La Alhambra 35:31–48 (in Spanish)

    Google Scholar 

  • IGME (2019) Mapa geológico digital continuo de España. http://mapas.igme.es/gis/services/Cartografia_Geologica/IGME_Geode_50/MapServer/WMSServer?version=1.3.0. Last access: July 2019

  • Irizarry J, Lantada N, Pujades LG, Barbat A, Goula X, Susagna T, Roca A (2011) Ground-shaking scenarios and urban risk evaluation of Barcelona using the Risk-UE capacity spectrum based method. Bull Earthq Eng 9(2):441–466. https://doi.org/10.1007/s10518-010-9222-6

    Article  Google Scholar 

  • Lagomarsino S (2006) On the vulnerability assessment of monumental buildings. Bull Earthq Eng 4(4):445–463. https://doi.org/10.1007/s10518-006-9025-y

    Article  Google Scholar 

  • Lagomarsino S, Giovinazzi S (2006) Macroseismic and mechanical models for the vulnerability and damage assessment of current buildings. Bull Earthq Eng 4(4):415–443. https://doi.org/10.1007/s10518-006-9024-z

    Article  Google Scholar 

  • Lagomarsino S, Giovinazzi S, Podestà S, Resemini S (2003) Wp5: vulnerability of historical and monumental buildings handbook. In: RISK-UE: an advanced approach to earthquake risk scenarios with applications to different European towns. Contract No. EVK4-CT-2000-00014

  • Lantada N. (2007) Evaluación del riesgo sísmico mediante métodos avanzados y técnicas GIS. Aplicación a la ciudad de Barcelona. PhD thesis, Universitat Politècnica de Catalunya (in Spanish)

  • Lantada N, Irizarry J, Barbat A, Goula X, Roca A, Susagna T, Pujades LG (2010) Seismic hazard and risk scenarios for Barcelona, Spain, using the Risk-UE vulnerability index method. Bull Earthq Eng 8(2):201–229. https://doi.org/10.1007/s10518-009-9148-z

    Article  Google Scholar 

  • Lilley DM, Robinson J (1995) Ultimate strength of rammed earth walls with openings. Proc Inst Civ Eng Struct Build 110(3):278–287

    Article  Google Scholar 

  • Maniatidis V, Walker P (2008) Structural capacity of rammed earth in compression. J Mater Civ Eng 20(3):230–238. https://doi.org/10.1061/(ASCE)0899-1561(2008)20:3(230)

    Article  Google Scholar 

  • Martín JM (2002) Ensayo de análisis comparativo de técnicas, materiales y tipo constructivos en las fotificaciones medievales del Zenete (Granada). Miscelánea Medieval Murciana, pp 25–26. https://doi.org/10.6018/j8021 (in Spanish)

  • Martínez S (2014) Evaluación de la vulnerabilidad sísmica urbana basada en tipologías constructivas y disposición urbana de la edificación. Aplicación en la ciudad de Lorca, Región de Murcia. PhD thesis, Universidad Politécnica de Madrid, p 260 (in Spanish)

  • Martínez Solares JM, Mezcua J (2002) Seismic catalogue for the Iberian Peninsula (880 b.C.–1900), vol 18. Instituto Geográfico Nacional, Madrid (in Spanish)

    Google Scholar 

  • Mezcua J, Rueda J, García Blanco RM (2011) A new probabilistic seismic hazard study of Spain. Nat Hazards 59:1087–1108. https://doi.org/10.1007/s11069-011-9819-3

    Article  Google Scholar 

  • Mileto C, Vegas F, López JM (2011) Criterios y técnicas de intervención en tapia: La restauración de la torre Bofilla de Bétera (Valencia). Informes de la Construccion 63(523):81–96. https://doi.org/10.3989/ic.10.014(in Spanish)

    Article  Google Scholar 

  • Milutinovic ZV, Trendafiloski GS (2003) WP4: Vulnerability of current buildings. Risk-UE project Handbook, p 109

  • Molina S, Navarro M, Martínez-Pagan P, Pérez-Cuevas J, Vidal F, Navarro D, Agea-Medina N (2018) Potential damage and losses in a repeat of the 1910 Adra (Southern Spain) earthquake. Nat Hazards 92(3):1547–1571. https://doi.org/10.1007/s11069-018-3263-6

    Article  Google Scholar 

  • Moreno M (1994) Los estudios de sismicidad histórica en Andalucía: los terremotos históricos de la provincia de Almería. Instituto de Estudios Almerienses, pp 115–180 (in Spanish)

  • Moreno R, Bairán JM (2012) Evaluación sísmica de los edificios de mampostería típicos de Barcelona aplicando la metodología Risk-UE. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería 28(3):161–169

    Article  Google Scholar 

  • Rodríguez-Mariscal JD, Solís M, Cifuentes H (2018) Methodological issues for the mechanical characterization of unfired earth bricks. Constr Build Mater 175:804–814. https://doi.org/10.1016/j.conbuildmat.2018.04.118

    Article  Google Scholar 

  • Saidi M, Cherif AS, Zeghmati B, Sediki E (2018) Stabilization effects on the thermal conductivity and sorption behavior of earth bricks. Constr Build Mater 167:566–577

    Article  Google Scholar 

  • Sandi H, Floricel I (1995) Analysis of seismic risk affecting the existing building stock. In: Proceedings of the 10th European conference on earthquake engineering, pp 1105–1110

  • Silva PG, Rodríguez-Pascua MA, Pérez-López R, Bardaji T, Lario J, Alfaro P, Azañón JM (2008) Catalogue of the geological and environmental effects of earthquakes in Spain in the ESI-2007 Macroseismic Scale and their application to paleoseismology. Geotemas 6:1063–1066

    Google Scholar 

  • Tarma (2018) Caracterización de morteros de tapial en los enclaves de Lojuela, Mula y Romilla (in Spanish). Unpublished report

  • Tesela (2018) Estudio mineralógico de estructuras de tapial para proyecto PREFORTI (in Spanish). Unpublished report

  • Tomás A, Ródenas JL, García-Ayllón S (2017) Proposal for new values of behaviour modifiers for seismic vulnerability evaluation of reinforced concrete buildings applied to Lorca (Spain) using damage data from the 2011 earthquake. Bull Earthq Eng 15(9):3943–3962. https://doi.org/10.1007/s10518-017-0100-3

    Article  Google Scholar 

  • UNE 932-2 (1999) Ensayos para determinar las propiedades generales de los áridos. Parte 2: Métodos para la reducción de muestras de laboratorio (in Spanish)

  • UNE 932-3 (2004) Ensayos para determinar las propiedades generales de los áridos. Parte 3: Procedimiento y terminología para la descripción petrográfica simplificada (in Spanish)

  • UNE-EN 1015-10 (2000) Métodos de ensayo de los morteros para albañilería. Parte 10: Determinación de la densidad aparente en seco del mortero endurecido (in Spanish)

  • UNE-EN 196-2 (2014) Métodos de ensayo de cementos. Parte 2: Análisis químico de cementos (in Spanish)

  • UN-HABITAT (2009) United Nations Human Settlements Programme. Planning Sustainable Cities: Policy Directions: Global Report on Human Settlements 2009

  • Valente M, Milani G (2019) Damage assessment and collapse investigation of three historical masonry palaces under seismic actions. Eng Fail Anal 98:10–37. https://doi.org/10.1016/j.engfailanal.2019.01.066

    Article  Google Scholar 

Download references

Acknowledgements

This study is part of the PREFORTI project (BIA2015 69938-R) entitled “Sustainable methodology for the conservation and maintenance of mediaeval rammed-earth fortifications in the south-east of the Iberian Peninsula”, financed by the State Research Agency (SRA) and the European Regional Development Fund (ERDF). Laboratory analysis was conducted by Tesela Materiales, Innovación y Patrimonio S.L. (Granada) and Tarma, Restauración y Patrimonio S.L. (Granada). We thank three anonymous reviewers for their constructive comments and criticisms which helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Arto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arto, I., Garrido, J. & Gutiérrez-Carrillo, M.L. Seismic vulnerability analysis of medieval rammed earth fortifications in southeastern Spain. Bull Earthquake Eng 18, 5827–5858 (2020). https://doi.org/10.1007/s10518-020-00912-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-020-00912-1

Keywords

Navigation