Skip to main content
Log in

Efficient biosynthesis of polysaccharide welan gum in heat shock protein-overproducing Sphingomonas sp. via temperature-dependent strategy

  • Research Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

Cell growth and product formation are two critical processes in polysaccharide welan biosynthesis, but the conflict between them is often encountered. In this study, a temperature-dependent strategy was designed for two-stage welan production through overexpressing heat shock proteins in Sphingomonas sp. The first stage was cell growth phase with higher TCA cycle activity at 42 °C; the second stage was welan formation phase with higher precursor synthesis pathway activity at 37 °C. The highest welan concentration 37.5 g/L was achieved after two-stage process. Ultimately, this strategy accumulated welan yield of 79.2 g/100 g glucose and productivity of 0.62 g/L/h at 60 h, which were the best reported results so far. The duration of fermentation was shortened. Besides, rheological behavior of welan gum solutions remained stable at wide range of temperature, pH, and NaCl. These results indicated that this approach efficiently improved welan synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Schmid J, Sperl N, Sieber V (2014) A comparison of genes involved in sphingan biosynthesis brought up to date. Appl Microbiol Biotechnol 98(18):7719–7733

    CAS  PubMed  Google Scholar 

  2. Roca C, Alves VD, Freitas F, Reis MA (2015) Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol 6:288

    PubMed  PubMed Central  Google Scholar 

  3. Zhao F, Guo C, Cui Q, Hao Q, Xiu J, Han S, Zhang Y (2018) Exopolysaccharide production by an indigenous isolate Pseudomonas stutzeri XP1 and its application potential in enhanced oil recovery. Carbohydr Polym 199:375–381

    CAS  PubMed  Google Scholar 

  4. Kaur V, Bera MB, Panesar PS, Kumar H, Kennedy JF (2014) Welan gum: microbial production, characterization, and applications. Int J Biol Macromol 65:454–461

    CAS  PubMed  Google Scholar 

  5. Xu L, Xu G, Liu T, Chen Y, Gong H (2013) The comparison of rheological properties of aqueous welan gum and xanthan gum solutions. Carbohydr Polym 92(1):516–522

    CAS  PubMed  Google Scholar 

  6. Zhu H, Sun SW, Li H, Chang AP, Liu YC, Qian J, Shen YL (2019) Significantly improved production of Welan gum by Sphingomonas sp. WG through a novel quorum-sensing-interfering dipeptide cyclo(L-Pro-L-Phe). Int J Biol Macromol 126:118–122

    CAS  PubMed  Google Scholar 

  7. Alkhateeb RS, Vorhölter FJ, Steffens T, Rückert C, Ortseifen V, Hublik G, Niehaus K, Pühler A (2018) Comparative transcription profiling of two fermentation cultures of Xanthomonas campestris pv. campestris B100 sampled in the growth and in the stationary phase. Appl Microbiol Biotechnol 102(15):6613–6625

    CAS  PubMed  Google Scholar 

  8. Li H, Jiao X, Sun Y, Sun S, Feng Z, Zhou W, Zhu H (2016) The preparation and characterization of a novel sphingan WL from marine Sphingomonas sp. WG Sci Rep 6:37899

    CAS  PubMed  Google Scholar 

  9. Li H, Xu H, Li S, Feng XH, Ouyang PK (2012) Optimization of exopolysaccharide welan gum production by Alcaligenes sp. CGMCC2428 with Tween-40 using response surface methodology. Carbohydr Polym 87:1363–1368

    CAS  Google Scholar 

  10. Hsu CH, Martin Lo Y (2003) Characterization of xanthan gum biosynthesis in a centrifugal, packed-bed reactor using metabolic flux analysis. Process Biochem 38:1617–1625

    CAS  Google Scholar 

  11. Li H, Xu H, Xu H, Li S, Ouyang PK (2010) Biosynthetic pathway of sugar nucleotides essential for welan gum production in Alcaligenes sp. CGMCC2428. Appl Microbiol Biotechnol 86:295–303

    CAS  PubMed  Google Scholar 

  12. Klamt S, Mahadevan R, Hädicke O (2018) When do two-stage processes outperform one-stage processes? Biotechnol J 13:1700539

    Google Scholar 

  13. Zhou P, Xie W, Yao Z, Zhu Y, Ye L, Yu H (2018) Development of a temperature-responsive yeast cell factory using engineered Gal4 as a protein switch. Biotechnol Bioeng 115:1321–1330

    CAS  PubMed  Google Scholar 

  14. Harder BJ, Bettenbrock K, Klamt S (2018) Temperature-dependent dynamic control of the TCA cycle increases volumetric productivity of itaconic acid production by Escherichia coli. Biotechnol Bioeng 115:156–164

    CAS  PubMed  Google Scholar 

  15. Priya A, Dureja P, Talukdar P, Rathi R, Lal B, Sarma PM (2016) Microbial production of 2,3-butanediol through a two-stage pH and agitation strategy in 150 l bioreactor. Biochem Eng J 105:159–167

    CAS  Google Scholar 

  16. Venayak N, Anesiadis N, Cluett WR, Mahadevan R (2015) Engineering metabolism through dynamic control. Curr Opin Biotechnol 34:142–152

    CAS  PubMed  Google Scholar 

  17. Chen CY, Yang YT (2018) Combining engineering strategies and fermentation technology to enhance docosahexaenoic acid (DHA) production from an indigenous Thraustochytrium sp. BM2 strain. Biochem Eng J 133:179–185

    CAS  Google Scholar 

  18. Chakshusmathi G, Mondal K, Lakshmi GS, Singh G, Roy A, Ch RB, Madhusudhanan S, Varadarajan R (2004) Design of temperature-sensitive mutants solely from amino acid sequence. Proc Natl Acad Sci USA 101(21):7925–7930

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Kitano H (2004) Biological robustness. Nat Rev Genet 5(11):826–837

    CAS  PubMed  Google Scholar 

  20. Kambourova M, Mandeva R, Dimova D, Poli A, Nicolaus B, Tommonaro G (2009) Production and characterization of a microbial glucan, synthesized by Geobacillus tepidamans V264 isolated from Bulgarian hot spring. Carbohydr Polym 77:338–343

    CAS  Google Scholar 

  21. Radchenkova N, Vassilev S, Panchev I, Anzelmo G, Tomova I, Nicolaus B, Kuncheva M, Petrov K, Kambourova M (2013) Production and properties of two novel exopolysaccharides synthesized by a thermophilic bacterium Aeribacillus pallidus 418. Appl Biochem Biotechnol 171(1):31–43

    CAS  PubMed  Google Scholar 

  22. Yasar Yildiz S, Anzelmo G, Ozer T, Radchenkova N, Genc S, Di Donato P, Nicolaus B, Toksoy Oner E, Kambourova M (2014) Brevibacillus themoruber: a promising microbial cell factory for exopolysaccharide production. J Appl Microbiol 116(2):314–324

    CAS  PubMed  Google Scholar 

  23. Rudolph B, Gebendorfer KM, Buchner J, Winter J (2010) Evolution of Escherichia coli for growth at high temperatures. J Biol Chem 285(25):19029–19034

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lin Z, Zhang Y, Wang J (2013) Engineering of transcriptional regulators enhances microbial stress tolerance. Biotechnol Adv 31(6):986–991

    CAS  PubMed  Google Scholar 

  25. Luan G, Dong H, Zhang T, Lin Z, Zhang Y, Li Y, Cai Z (2014) Engineering cellular robustness of microbes by introducing the GroESL chaperonins from extremophilic bacteria. J Biotechnol 178:38–40

    CAS  PubMed  Google Scholar 

  26. Feder ME, Hofmann GE (1999) Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu Rev Physiol 61:243–282

    CAS  PubMed  Google Scholar 

  27. Tomas CA, Welker NE, Papoutsakis ET (2003) Overexpression of groESL in Clostridium acetobutylicum results in increased solvent production and tolerance, prolonged metabolism, and changes in the cell's transcriptional program. Appl Environ Microbiol 69(8):4951–4965

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu Y, Zhang G, Sun H, Sun X, Jiang N, Rasool A, Lin Z, Li C (2014) Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. Bioresour Technol 170:38–44

    CAS  PubMed  Google Scholar 

  29. Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RMII, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    CAS  PubMed  Google Scholar 

  30. Zhu P, Dong SH, Li S, Xu XY, Xu H (2014) Improvement of welan gum biosynthesis and transcriptional analysis of the genes responding to enhanced oxygen transfer by oxygen vectors in Sphingomonas sp. Biochem Eng J 90:264–271

    CAS  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 −ΔΔCt method. Methods 25:402–408

    CAS  PubMed  Google Scholar 

  32. Lara AR, Leal L, Flores N, Gosset G, Bolivar F, Ramirez OT (2006) Transcriptional and metabolic response of recombinant Escherichia coli to spatial dissolved oxygen tension gradients simulated in a scale-down system. Biotechnol Bioeng 93:372–385

    CAS  PubMed  Google Scholar 

  33. Kirby DM, Thorburn DR, Turnbull DM, Taylor RW (2007) Biochemical assays of respiratory chain complex activity. Methods Cell Biol 80:93–119

    CAS  PubMed  Google Scholar 

  34. Mhamdi A, Mauve C, Gouia H, Saindrenan P, Hodges M, Noctor G (2010) Cytosolic NADP-dependent isocitrate dehydrogenase contributes to redox homeostasis and the regulation of pathogen responses in Arabidopsis leaves. Plant Cell Environ 33:1112–1123

    CAS  PubMed  Google Scholar 

  35. Robinson JB, Inman L, Sumegi B, Srere PA (1987) Further characterization of the krebs tricarboxylic acid cycle metabolon. J Biol Chem 262:1786–1790

    CAS  PubMed  Google Scholar 

  36. Zhang S, Bryant DA (2011) The tricarboxylic acid cycle in cyanobacteria. Science 334:1551–1553

    CAS  PubMed  Google Scholar 

  37. Arrecubieta C, Garcia E, Lopez R (1996) Demonstration of UDP-glucose dehydrogenase activity in cell extracts of Escherichia coli expressing the pneumococcal cap3A gene required for the synthesis of type 3 capsular polysaccharide. J Bacteriol 178:2971–2974

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Videira PA, Cortes LL, Fialho AM, Sá-Correia I (2000) Identification of the pgmG gene, encoding a bifunctional protein with phosphoglucomutase and phosphomannomutase activities, in the gellan gum-producing strain Sphingomonas paucimobilis ATCC 31461. Appl Environ Microbiol 66:2252–2258

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sá-Correia I, Fialho AM, Videira P, Moreira LM, Marques AR, Albano H (2002) Gellan gum biosynthesis in Sphingomonas paucimobilis ATCC 31461: genes, enzymes and exopolysaccharide production engineering. J Ind Microbiol Biotechnol 29:170–176

    PubMed  Google Scholar 

  40. Silva E, Marques AR, Fialho AM, Granja AT, Sá-Correia I (2005) Proteins encoded by Sphingomonas elodea ATCC 31461 rmlA and ugpG genes, involved in gellan gum biosynthesis, exhibit both dTDP- and UDP-glucose pyrophosphorylase activities. Appl Environ Microbiol 71(8):4703–4712

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  PubMed  Google Scholar 

  42. Gengenbacher M, Rao SP, Pethe K, Dick T (2010) Nutrient-starved, non-replicating Mycobacterium tuberculosis requires respiration, ATP synthase and isocitrate lyase for maintenance of ATP homeostasis and viability. Microbiology 156:81–87

    CAS  PubMed  Google Scholar 

  43. Zhu P, Chen XY, Li S, Xu H, Dong SH, Xu ZQ, Zhang Y (2014) Screening and characterization of Sphingomonas sp. mutant for welan gum biosynthesis at an elevated temperature. Bioprocess Biosyst Eng 37:1849–1858

    CAS  PubMed  Google Scholar 

  44. Walter S, Buchner J (2002) Molecular chaperones-cellular machines for protein folding. Angew Chem Int Ed Engl 41:1098–1113

    CAS  PubMed  Google Scholar 

  45. Soma Y, Tsuruno K, Wada M, Yokota A, Hanai T (2014) Metabolic flux redirection from a central metabolic pathway toward a synthetic pathway using a metabolic toggle switch. Metab Eng 23:175–184

    CAS  PubMed  Google Scholar 

  46. Hamcerencu M, Desbrieres J, Popa M, Riess G (2009) Stimuli-sensitive xanthan derivatives/N-isopropylacrylamide hydrogels: influence of cross-linking agent on interpenetrating polymer network properties. Biomacromol 10(7):1911–1922

    CAS  Google Scholar 

  47. Gustafsson L (1991) Microbiological calorimetry. Thermochim Acta 193:145–171

    CAS  Google Scholar 

  48. Woo JM, Yang KM, Kim SU, Blank LM, Park JB (2014) High temperature stimulates acetic acid accumulation and enhances the growth inhibition and ethanol production by Saccharomyces cerevisiae under fermenting conditions. Appl Microbiol Biotechnol 98(13):6085–6094

    CAS  PubMed  Google Scholar 

  49. Wang J, Wang W, Wang H, Yuan F, Xu Z, Yang K, Li Z, Chen Y, Fan K (2019) Improvement of stress tolerance and riboflavin production of Bacillus subtilis by introduction of heat shock proteins from thermophilic bacillus strains. Appl Microbiol Biotechnol 103(11):4455–4465

    CAS  PubMed  Google Scholar 

  50. Hendriks ATWM, van Lier JB, de Kreuk MK (2018) Growth media in anaerobic fermentative processes: The underestimated potential of thermophilic fermentation and anaerobic digestion. Biotechnol Adv 36(1):1–13

    CAS  PubMed  Google Scholar 

  51. Wu SJ, Chen HQ, Jin ZY, Tong QY (2010) Effect of two-stage temperature on pullulan production by Aureobasidium pullulans. World J Microb Biot 26:737–741

    CAS  Google Scholar 

  52. Zhu GL, Sheng L, Tong QY (2013) A new strategy to enhance gellan production by two-stage culture in Sphingomonas paucimobilis. Carbohydr Polym 98:829–834

    CAS  PubMed  Google Scholar 

  53. Ai HX, Liu M, Yu PR, Zhang SZ, Suo YK, Luo P, Li S, Wang JF (2015) Improved welan gum production by Alcaligenes sp. ATCC31555 from pretreated cane molasses. Carbohydr Polym 129:35–43

    CAS  PubMed  Google Scholar 

  54. Liu XL, Lin LJ, Xu XY, Zhang H, Wu LT, Zhu P, Li S, Xu H (2018) Two-step economical welan gum production by Sphingomonas sp. HT-1 from sugar industrial by-products. Carbohydr Polym 181:412–418

    CAS  PubMed  Google Scholar 

  55. Silva C, Torres MD, Chenlo F, Moreir R (2017) Rheology of aqueous mixtures of tragacanth and guar gums: effects of temperature and polymer ratio. Food Hydrocoll 69:293–300

    CAS  Google Scholar 

  56. Medina-Torres L, Brito-De La Fuente E, Torrestiana-Sanchez B, Katthain R (2000) Rheological properties of the mucilage gum (Opuntia ficus indica). Food Hydrocoll 14(5):417–424

    CAS  Google Scholar 

  57. Hoffmann F, Weber J, Rinas U (2002) Metabolic adaptation of Escherichia coli during temperature-induced recombinant protein production: 1. Readjustment of metabolic enzyme synthesis. Biotechnol Bioeng 80(3):313–319

    CAS  PubMed  Google Scholar 

  58. Chatterjee I, Schmitt S, Batzilla CF, Engelmann S, Keller A, Ring MW, Kautenburger R, Ziebuhr W, Hecker M, Preissner KT, Bischoff M, Proctor RA, Beck HP, Lenhof HP, Somerville GA, Herrmann M (2009) Staphylococcus aureus ClpC ATPase is a late growth phase effector of metabolism and persistence. Proteomics 9:1152–1176

    CAS  PubMed  Google Scholar 

  59. Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, Vasala A, Neubauer P (2005) Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Fact 4(1):9

    PubMed  PubMed Central  Google Scholar 

  60. Liang LY, Liu RM, Li F, Wu MK, Chen KQ, Ma JF, Jiang M, Wei P, Ouyang PK (2013) Repetitive succinic acid production from lignocellulose hydrolysates by enhancement of ATP supply in metabolically engineered Escherichia coli. Bioresour Technol 143:405–412

    CAS  PubMed  Google Scholar 

  61. Rodrigues JL, Rodrigues LR (2018) Potential applications of the Escherichia coli heat shock response in synthetic biology. Trends Biotechnol 36(2):186–198

    CAS  PubMed  Google Scholar 

  62. Mainguet SE, Gronenberg LS, Wong SS, Liao JC (2013) A reverse glyoxylate shunt to build a non-native route from C4 to C2 in Escherichia coli. Metab Eng 19:116–127

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (21776133) and Natural Science Foundation of Jiangsu Province (BK20160985).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liming Liu or Hong Xu.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 68 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, P., Zhan, Y., Wang, C. et al. Efficient biosynthesis of polysaccharide welan gum in heat shock protein-overproducing Sphingomonas sp. via temperature-dependent strategy. Bioprocess Biosyst Eng 44, 247–257 (2021). https://doi.org/10.1007/s00449-020-02438-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-020-02438-x

Keywords

Navigation