Skip to main content
Log in

Neurovascular Coupling in Special Operations Forces Combat Soldiers

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate how concussion history affects neurovascular coupling in Special Operations Forces (SOF) combat Soldiers. We studied 100 SOF combat Soldiers [age = 33.5 ± 4.3 years; height = 180.4 ± 6.0 cm; 55 (55.0%) with self-reported concussion history]. We employed transcranial Doppler (TCD) ultrasound to assess neurovascular coupling (NVC) via changes in posterior cerebral artery (PCA) velocity in response to a reading and a visual search task. Baseline TCD data were collected for 2 min. NVC was quantified by the percent change in overall PCA response curves. We employed linear mixed effect models using a linear spline with one knot to assess group differences in percent change observed in the PCA velocity response curves between SOF combat Soldiers with and without a concussion history. Baseline PCA velocity did not significantly differ (t98 = 1.28, p = 0.20) between those with and without concussion history. Relative PCA velocity response curves did not differ between those with and without a concussion history during the reading task (F1,98 = 0.80, p = 0.37) or the visual search task (F1,98 = 0.52, p = 0.47). When assessing only SOF combat Soldiers with a concussion history, differential response to task was significantly greater in those with 3 or more concussions (F1,4341 = 27.24, p < 0.0001) relative to those with 1–2 concussions. Despite no main effect of concussion history on neurovascular coupling response in SOF combat Soldiers, we observed a dose-response based on lifetime concussion incidence. While long-term neurophysiological effects associated with head impact and blast-related injury are currently unknown, assessing NVC response may provide further insight into cerebrovascular function and overall physiological health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Aaslid, R. Visually evoked dynamic blood flow response of the human cerebral circulation. Stroke 18(4):771–775, 1987. https://doi.org/10.1161/01.str.18.4.771.

    Article  CAS  PubMed  Google Scholar 

  2. Aaslid, R. Visually evoked dynamic blood flow response of the human cerebral circulation. http://stroke.ahajournals.org/. Accessed September 20, 2018.

  3. Albalawi, T., J. W. Hamner, M. Lapointe, W. P. Meehan, and C. O. Tan. The relationship between cerebral vasoreactivity and post-concussive symptom severity. J. Neurotrauma 34(19):2700–2705, 2017. https://doi.org/10.1089/neu.2017.5060.

    Article  PubMed  Google Scholar 

  4. Belmont, P. J., G. P. Goodman, M. Zacchilli, M. Posner, C. Evans, and B. D. Owens. Incidence and epidemiology of combat injuries sustained during “the surge” portion of operation Iraqi Freedom by a U.S. Army brigade combat team. J. Trauma 68(1):204–210, 2010. https://doi.org/10.1097/ta.0b013e3181bdcf95.

    Article  PubMed  Google Scholar 

  5. Buchweitz, A., R. A. Mason, L. M. B. Tomitch, and M. A. Just. Brain activation for reading and listening comprehension: An fMRI study of modality effects and individual differences in language comprehension. Psychol. Neurosci. 2(2):111–123, 2009.

    Article  Google Scholar 

  6. Capó-Aponte, J. E., T. G. Urosevich, L. A. Temme, A. K. Tarbett, and N. K. Sanghera. Visual dysfunctions and symptoms during the subacute stage of blast-induced mild traumatic brain injury. Mil. Med. 177(7):804–813, 2012. https://doi.org/10.7205/milmed-d-12-00061.

    Article  PubMed  Google Scholar 

  7. Cauli, B., X.-K. Tong, A. Rancillac, et al. Cortical GABA interneurons in neurovascular coupling: relays for subcortical vasoactive pathways. J. Neurosci. 24(41):8940–8949, 2004. https://doi.org/10.1523/JNEUROSCI.3065-04.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Churchill, N. W., M. G. Hutchison, S. J. Graham, and T. A. Schweizer. Symptom correlates of cerebral blood flow following acute concussion. Neuroimage Clin. 16:234–239, 2017. https://doi.org/10.1016/j.nicl.2017.07.019.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Cifu, D. X., J. R. Wares, K. W. Hoke, P. A. Wetzel, G. Gitchel, and W. Carne. Differential eye movements in mild traumatic brain injury versus normal controls. J. Head Trauma Rehabil. 30(1):21–28, 2015. https://doi.org/10.1097/HTR.0000000000000036.

    Article  PubMed  Google Scholar 

  10. De Beaumont, L., S. Tremblay, J. Poirier, M. Lassonde, and H. Théoret. Altered bidirectional plasticity and reduced implicit motor learning in concussed athletes. Cereb. Cortex 22(1):112–121, 2012. https://doi.org/10.1093/cercor/bhr096.

    Article  PubMed  Google Scholar 

  11. DoD Worldwide Numbers for TBI | DVBIC. https://dvbic.dcoe.mil/dod-worldwide-numbers-tbi. Accessed April 30, 2020.

  12. Elder, G. A., and A. Cristian. Blast-related mild traumatic brain injury: mechanisms of injury and impact on clinical care. Mt Sinai J. Med. 76(2):111–118, 2009. https://doi.org/10.1002/msj.20098.

    Article  PubMed  Google Scholar 

  13. Elder, G. A., M. A. Gama Sosa, R. De Gasperi, et al. Vascular and inflammatory factors in the pathophysiology of blast-induced brain injury. Front Neurol. 6:48, 2015. https://doi.org/10.3389/fneur.2015.00048.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Forsten, R. D., R. J. Roberts, C. Stewart, B. E. Solomon, and M. R. Baggett. Mild traumatic brain injury: situational awareness for special operations medical providers. J. Special Oper. Med. 8:74–87, 2008. https://www.jsomonline.org/articles/0803/2008374Forsten.pdf. Accessed March 19, 2019.

  15. Galetta, K. M., J. Barrett, M. Allen, et al. The King-Devick test as a determinant of head trauma and concussion in boxers and MMA fighters. Neurology 76(17):1456–1462, 2011. https://doi.org/10.1212/WNL.0b013e31821184c9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Galetta, K. M., L. E. Brandes, K. Maki, et al. The King-Devick test and sports-related concussion: study of a rapid visual screening tool in a collegiate cohort. J. Neurol. Sci. 309(1–2):34–39, 2011. https://doi.org/10.1016/j.jns.2011.07.039.

    Article  PubMed  Google Scholar 

  17. Galetta, M. S., K. M. Galetta, J. McCrossin, et al. Saccades and memory: baseline associations of the King-Devick and SCAT2 SAC tests in professional ice hockey players. J. Neurol. Sci. 328(1–2):28–31, 2013. https://doi.org/10.1016/j.jns.2013.02.008.

    Article  PubMed  Google Scholar 

  18. Giza, C. C., G. S. Griesbach, and D. A. Hovda. Experience-dependent behavioral plasticity is disturbed following traumatic injury to the immature brain. Behav. Brain Res. 157(1):11–22, 2005. https://doi.org/10.1016/j.bbr.2004.06.003.

    Article  PubMed  Google Scholar 

  19. Giza, C. C., and D. A. Hovda. The new neurometabolic cascade of concussion. Neurosurgery 75(Suppl 4):S24–S33, 2014. https://doi.org/10.1227/NEU.0000000000000505.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giza, C. C., N. S. S. Maria, and D. A. Hovda. N-methyl-D-aspartate receptor subunit changes after traumatic injury to the developing brain. J. Neurotrauma 23(6):950–961, 2006. https://doi.org/10.1089/neu.2006.23.950.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Goodrich, G. L., H. M. Flyg, J. E. Kirby, C.-Y. Chang, and G. L. Martinsen. Mechanisms of TBI and visual consequences in military and veteran populations. Optom. Vis. Sci. 90(2):105–112, 2013. https://doi.org/10.1097/OPX.0b013e31827f15a1.

    Article  PubMed  Google Scholar 

  22. Goodrich, G. L., J. Kirby, G. Cockerham, S. P. Ingalla, and H. L. Lew. Visual function in patients of a polytrauma rehabilitation center: a descriptive study. J. Rehabil. Res. Dev. 44(7):929–936, 2007.

    Article  Google Scholar 

  23. Guskiewicz, K. M., S. W. Marshall, J. Bailes, et al. Recurrent concussion and risk of depression in retired professional football players. Med. Sci. Sports Exerc. 39(6):903–909, 2007. https://doi.org/10.1249/mss.0b013e3180383da5.

    Article  PubMed  Google Scholar 

  24. Guskiewicz, K. M., M. McCrea, S. W. Marshall, et al. Cumulative effects associated with recurrent concussion in collegiate football players: the NCAA Concussion Study. JAMA 290(19):2549–2555, 2003. https://doi.org/10.1001/jama.290.19.2549.

    Article  CAS  PubMed  Google Scholar 

  25. King, D., T. Clark, and C. Gissane. Use of a rapid visual screening tool for the assessment of concussion in amateur rugby league: a pilot study. J. Neurol. Sci. 320(1–2):16–21, 2012. https://doi.org/10.1016/j.jns.2012.05.049.

    Article  PubMed  Google Scholar 

  26. Lin, A.-L., P. T. Fox, J. Hardies, T. Q. Duong, and J.-H. Gao. Nonlinear coupling between cerebral blood flow, oxygen consumption, and ATP production in human visual cortex. Proc. Natl. Acad. Sci. U.S.A. 107(18):8446–8451, 2010. https://doi.org/10.1073/pnas.0909711107.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindquist, L. K., H. C. Love, and E. B. Elbogen. Traumatic brain injury in iraq and afghanistan veterans: new results from a national random sample study. J. Neuropsychiatry Clin. Neurosci. 29(3):254–259, 2017. https://doi.org/10.1176/appi.neuropsych.16050100.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mac Donald, C. L., A. M. Johnson, L. Wierzechowski, et al. Outcome trends after us military concussive traumatic brain injury. J. Neurotrauma 34(14):2206–2219, 2017. https://doi.org/10.1089/neu.2016.4434.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Owens, B. D., J. F. Kragh, J. C. Wenke, J. Macaitis, C. E. Wade, and J. B. Holcomb. Combat wounds in operation Iraqi Freedom and operation Enduring Freedom. J. Trauma 64(2):295–299, 2008. https://doi.org/10.1097/TA.0b013e318163b875.

    Article  PubMed  Google Scholar 

  30. Phillips, A. A., F. H. Chan, M. M. Z. Zheng, A. V. Krassioukov, and P. N. Ainslie. Neurovascular coupling in humans: physiology, methodological advances and clinical implications. J. Cereb. Blood Flow Metab. 36(4):647–664, 2016. https://doi.org/10.1177/0271678X15617954.

    Article  PubMed  Google Scholar 

  31. Prichep, L. S., M. McCrea, W. Barr, M. Powell, and R. J. Chabot. Time course of clinical and electrophysiological recovery after sport-related concussion. J. Head Trauma Rehabil. 28(4):266–273, 2013. https://doi.org/10.1097/HTR.0b013e318247b54e.

    Article  PubMed  Google Scholar 

  32. Robinson, M. E., D. C. Clark, W. P. Milberg, R. E. McGlinchey, and D. H. Salat. Characterization of differences in functional connectivity associated with close-range blast exposure. J. Neurotrauma 34(S1):S53–S61, 2017. https://doi.org/10.1089/neu.2016.4709.

    Article  PubMed  Google Scholar 

  33. Roby, P. R., A. Chandran, N. E. Barczak-Scarboro, et al. Cerebrovascular reactivity in special operations forces combat soldiers. Ann. Biomed. Eng. 2020. https://doi.org/10.1007/s10439-020-02514-z.

    Article  PubMed  Google Scholar 

  34. Scott, S. G., H. G. Belanger, R. D. Vanderploeg, J. Massengale, and J. Scholten. Mechanism-of-injury approach to evaluating patients with blast-related polytrauma. J. Am. Osteopath. Assoc. 106:265–270, 2006.

    PubMed  Google Scholar 

  35. Smirl, J. D., A. D. Wright, K. Bryk, and P. V. Donkelaar. Where’s Waldo? The utility of a complicated visual search paradigm for transcranial Doppler-based assessments of neurovascular coupling. J. Neurosci. Methods 270:92–101, 2016.

    Article  Google Scholar 

  36. Tannen, B., P. Practice, and H. Square. Vision and Reading Deficits In Post-Concussion Patients: A Retrospective Analysis. Vision Dev. Rehab. 1(3):206–213, 2015.

    Google Scholar 

  37. Ventura, R. E., L. J. Balcer, S. L. Galetta, and J. C. Rucker. Ocular motor assessment in concussion: current status and future directions. J. Neurol. Sci. 361:79–86, 2016. https://doi.org/10.1016/j.jns.2015.12.010.

    Article  PubMed  Google Scholar 

  38. Willie, C. K., F. L. Colino, D. M. Bailey, et al. Utility of transcranial Doppler ultrasound for the integrative assessment of cerebrovascular function. J. Neurosci. Methods 196(2):221–237, 2011. https://doi.org/10.1016/j.jneumeth.2011.01.011.

    Article  CAS  PubMed  Google Scholar 

  39. Wright, A. D., J. D. Smirl, K. Bryk, M. Jakovac, and P. van Donkelaar. A prospective transcranial doppler ultrasound-based evaluation of the effects of repetitive subconcussive head trauma on neurovascular coupling dynamics. Clin. J. Sport Med. 2018. https://doi.org/10.1097/JSM.0000000000000578.

    Article  Google Scholar 

  40. Wright, A. D., J. D. Smirl, K. Bryk, and P. van Donkelaar. A prospective transcranial doppler ultrasound-based evaluation of the acute and cumulative effects of sport-related concussion on neurovascular coupling response dynamics. J. Neurotrauma 34(22):3097–3106, 2017. https://doi.org/10.1089/neu.2017.5020.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This project was funded with contract grant support from the United States Army Special Operations Command (USASOC) to the University of North Carolina at Chapel Hill (Chapel Hill, NC, USA). This work was also supported by funding secured by the Preservation of the Force and Family Program at US Special Operations Command and executed as a subaward issued to the University of North Carolina at Chapel Hill by the Henry M. Jackson Foundation under a cooperative agreement with the Uniformed Services University. Co-authors DeLellis, Healy, Kane, Lynch, and Means were employed by USASOC for part or all of the study period. The results of the study are presented clearly, honestly, and without fabrication, falsification, or inappropriate data manipulation. We would like to thank the research team at the Matthew Gfeller Sport-Related Traumatic Brain Injury Research Center for assistance with data collection. We would also like to thank LTC Shane Larson, LTC Kane Morgan, MSG Zac Prengler, SGM John Sims, MSG Daniel Carver, and SGM Lance Doody for assistance with the study and dissemination.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Mihalik.

Additional information

Associate Editor Joel D. Stitzel oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roby, P.R., DeCicco, J.P., Chandran, A. et al. Neurovascular Coupling in Special Operations Forces Combat Soldiers. Ann Biomed Eng 49, 793–801 (2021). https://doi.org/10.1007/s10439-020-02604-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-020-02604-y

Keywords

Navigation